Признаки делимости от 1 до 10. Старт в науке. Теоремы о делимости произведения и суммы натуральных чисел

  • Дата: 15.11.2023

Признаки делимости чисел сложно применять, поскольку их достаточно много. Зато знание таких признаков существенно экономит время, поскольку позволяет без деления узнать, делиться одно число на другое или нет. Разберемся в теме подробнее.

Что такое делимость?

Признаки делимости позволяют просто и быстро определить, возможно ли полностью поделить одно число на другое. А делимость это и есть возможность поделить одно число на друге без остатка.

Признаки делимости

Признаки делимости удобнее изучать, разбив возможные делители на группы. Поступим так же и рассмотрим делимость на каждую из групп в отдельности.

На 2,4,8

Эти числа в рассматриваемом вопросе сгруппированы, так как их признаки очень похожи друг на друга.

  • Число делится на 2 только если является четным.
  • Число делится на 4, если последние две цифры числа делятся на 4 или последние две цифры 00. Например, число 130 не делится на 4, так как 30 не делится на 4. А вот уже число 1400 можно поделить на 4.
  • Число делится на 8, если последние две цифры числа нули или делятся на 8

На 3 и 9

Число делится на 3, если сумма цифр этого числа делится на 3. Рассмотрим число: 804. Оно делится на 3, поскольку сумма цифр 8+0+4=12 - делится на 3.

Число делится на 9, если сумма цифр числа делится на 9. Признак похож на признак делимости на число 3.
Интересно: Если число делится на 9, то оно делится и на 3. При этом, число, которое делится на 3 не всегда делится на 9.

На 5

Число делится на 5, если последняя цифра числа равняется 5 или нулю. Это наиболее известный признак делимости, наряду с делимостью на 2.

На 6

Чтобы число делилось на 6, оно должно делиться на 2 и 3, так как 2*3=6. Поэтому признак делимости на 6 это объединение признаков деления на 2 и на 3.

То есть: число делится на 6, если оно четное и сумма всех его цифр делится на 3

На 7

Самые сложные в восприятии признаки делимости на 7 и на 11. Число делится на 7, если разность сумм четных цифр числа и нечетных цифр чисел делится на 7.

Приведем пример: число 469 делится на 7. Почему? Сумма цифр на нечетных позициях 4+9=13. Сумма чисел на четных позициях 6. Разность получившихся сумм: 13-6=7, а это число делится на 7. Поэтому все число 469 делится на 7

На 10

Число делится на 10 только если последней цифрой числа является 0

По тому же принципу определяют делимость числа на 100, 1000 и так далее. Если у числа два нуля на конце, то оно делится на 100, если три нуля на конце, число делится на 1000 и так далее.

На 11

Число делится на 11 только, если разность сумм четных и нечетных цифр числа делится на 11 или равняется нулю Приведем пример:

Число 2035 делится на 11. Сумма цифр, стоящих на четных позициях: 2+3=5. Сумма нечетных цифр: 0+5=5. Разность полученных выражений:5-5=0, значит число делится на 11.

Нельзя путать понятия четной позиции и четного числа. Цифра это знак, который используется для записи чисел. Число это набор цифр, каждая из которых стоит на своей позиции. В числе 127 всего три цифры. Цифра 1 стоит на первой позиции, цифра 2 на второй и так далее. На четной позиции находится цифра 2. На нечетных позициях цифры 1 и 7.

Чтобы быстрее запомнить все группы можно свести в таблицу признаков делимости чисел.

Признаки

Запомни

Признак делимости на 2

Число делится на 2, если его последняя цифра делится на 2 или является нулём.

Признак делимости на 4

Число делится на 4, если две его последние цифры нули или образуют число, делящееся на 4.

Признак делимости на 8

Число делится на 8, если три последние его цифры нули или образуют число, делящееся на 8.

Признак делимости на 3

Число делится на 3, если сумма всех его цифр делится на 3.

Признак делимости на 6

Число делится на 6, если оно делится одновременно на 2 и на 3.

Признак делимости на 9

Число делится на 9, если сумма всех его цифр делится на 9.

Признак делимости на 5

Число делится на 5, если его последняя цифра 5 или 0.

Признак делимости на 25

Число делится на 25, если его две последние цифры нули или образуют число, которое делится на 25.

Признак делимости на 10,100 и 1000.

10 делятся нацело только те числа, последняя цифра которых нуль.

На 100 делятся нацело только те числа, две последние цифры которых нули.

На 1000 делятся нацело только те числа, три последние цифры нули.

Признак делимости на 11

Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.

Что мы узнали?

Мы поговорили о признаках делимости. Расписали все существующие признаки по группам. В особо сложных ситуациях привели примеры.

Тест по теме

Оценка статьи

Средняя оценка: 4 . Всего получено оценок: 282.

Приступим к рассмотрению темы «Признак делимости на 4 ». Приведем здесь формулировку признака, проведем его доказательство, рассмотрим основные примеры задач. В конце раздела мы собрали сведения о подходах, которые можно применять в тех случаях, когда нам нужно доказать делимость чисел на 4 , заданных буквенным выражением.

Признак делимости на 4 , примеры

Мы можем пойти простым путем и поделить однозначное натуральное число на 4 для того, чтобы проверить, делится ли это число на 4 без остатка. Так же можно поступить с двузначными, трехзначными и проч. числами. Однако, чем больше становятся числа, тем сложнее проводить с ними действия с целью проверки делимости их на 4 .

Гораздо проще становится использовать признак делимости на 4 . Он предполагает проведение проверки делимости одной или двух последних цифр целого числа на 4 . Что это значит? Это значит, что некоторое число a делится на 4 в том случае, если одна или две крайние правые цифры в записи числа a делятся на 4 . Если число, составленное из двух крайних правых цифр в записи числа a не делятся на 4 без остатка, то и число a не делится на 4 без остатка.

Пример 1

Какие из чисел 98 028 , 7 612 и 999 888 777 делятся на 4 ?

Решение

Крайние правые цифры чисел 98 028 , 7 612 составляют числа 28 и 12 , которые делятся на 4 без остатка. Это значит, что и целые числа 98 028 , 7 612 ​​​​​​ ​делятся на 4 без остатка.

Последние две цифры в записи числа 999 888 777 образуют число 77 , которое не делится на 4 без остатка. Это значит, что и исходное число на 4 без остатка не делится.

Ответ: − 98 028 и 7 612 .

Если предпоследней цифрой в записи числа является 0 , то нам необходимо этот ноль отбросить и смотреть на оставшуюся крайнюю правую цифру в записи. Получается, что две цифры 01 мы заменяем 1 . И уже по одной оставшейся цифре мы делаем вывод о том, делится ли исходное число на 4 .

Пример 2

Делится ли числа 75 003 и − 88 108 на 4 ?

Решение

Две последние цифры числа 75 003 - видим 03 . Если отбросить ноль, то у нас остается цифра 3 , которая на 4 без остатка не делится. Это значит, что исходное число 75 003 на 4 без остатка не делится.

Теперь возьмем две последние цифры числа − 88 108 . Это 08 , из которых мы должны оставить лишь последнюю цифру 8 . 8 делится на 4 без остатка.

Это значит, что и исходное число − 88 108 мы можем поделить на 4 без остатка.

Ответ: 75 003 не делится на 4 , а − 88 108 – делится.

Числа, у которых в конце записи идет сразу два нуля, также делятся на 4 без остатка. Например, 100 делится на 4 , получается 25 . Доказать правдивость этого утверждения нам позволяет правило умножения числа на 100 .

Представим произвольно выбранное многозначное число a , запись которого справа заканчивается двумя нулями, как произведение a 1 · 100 , где число a 1 получается из числа a , если в его записи справа отбросить два нуля. Например, 486700 = 4867 · 100 .

Произведение a 1 · 100 содержит множитель 100 , который делится на 4 . Это значит, что все приведенное произведение делится на 4 .

Доказательство признака делимости на 4

Представим любое натуральное число a в виде равенства a = a 1 · 100 + a 0 , в котором число a 1 – это число a , из записи которого убрали две последние цифры, а число a 0 – это две крайние правые цифры из записи числа a . Если использовать конкретные натуральные числа, то равенство будет иметь вид undefined. Для одно- и двузначных чисел a = a 0 .

Определение 1

Теперь обратимся к свойствам делимости:

  • деление модуля числа a на модуль числа b необходимо и достаточно для того, чтобы целое число a делилось на целое число b ;
  • если в равенстве a = s + t все члены, кроме одного делятся на некоторое целое число b , то и этот оставшийся член делится на число b .

Теперь, освежив в памяти необходимые свойства делимости, переформулируем доказательство признака делимости на 4 в виде необходимого и достаточного условия делимости на 4 .

Теорема 1

Деление двух последних цифр в записи числа a на 4 – это необходимое и достаточное условие для делимости целого числа a на 4 .

Доказательство 1

Если предположить, что a = 0 , то теорема в доказательстве не нуждается. Для всех остальных целых чисел a мы будем использовать модуль числа a , который является числом положительным: a = a 1 · 100 + a 0

С учетом того, что произведение a 1 · 100 всегда делится на 4 , а также с учетом свойств делимости, которые мы привели выше, мы можем сделать следующее утверждение: если число a делится на 4 , то и модуль числа a делится на 4 , тогда из равенства a = a 1 · 100 + a 0 следует, что a 0 делится на 4 . Так мы доказали необходимость.

Из равенства a = a 1 · 100 + a 0 следует, что модуль a делится на 4 . Это значит, что и само число a делится на 4 . Так мы доказали достаточность.

Другие случаи делимости на 4

Рассмотрим случаи, когда нам нужно установить делимость на 4 целого числа, заданного некоторым выражением, значение которого надо вычислить. Для этого мы можем пойти следующим путем:

  • представить исходное выражение в виде произведения нескольких множителей, один из которых будет делиться на 4 ;
  • сделать вывод на основании свойства делимости о том, что все исходное выражение делится на
    4 .

Помочь в решении задачи часто помогает формула бинома Ньютона.

Пример 3

Делится ли на 4 значение выражения 9 n - 12 n + 7 при некотором натуральном n ?

Решение

Мы можем представить 9 в виде суммы 8 + 1 . Это дает нам возможность применить формулу бинома Ньютона:

9 n - 12 n + 7 = 8 + 1 n - 12 n + 7 = = C n 0 · 8 n + C n 1 · 8 n - 1 · 1 + . . . + C n n - 2 · 8 2 · 1 n - 2 + C n n - 1 · 8 · 1 n - 1 + C n n · 1 n - - 12 n + 7 = = 8 n + C n 1 · 8 n - 1 · 1 + . . . + C n n - 2 · 8 2 + n · 8 + 1 - - 12 n + 7 = = 8 n + C n 1 · 8 n - 1 · 1 + . . . + C n n - 2 · 8 2 - 4 n + 8 = = 4 · 2 · 8 n - 1 + 2 · C n 1 · 8 n - 2 + . . . + 2 · C n n - 2 · 8 1 - n + 2

Произведение, которое мы получили в ходе преобразований, содержит множитель 4 , а выражение в скобках представляет собой натуральное число. Это значит, что это произведение можно разделить на 4 без остатка.

Мы можем утверждать, что исходное выражение 9 n - 12 n + 7 делится на 4 при любом натуральном n .

Ответ: Да.

Также мы можем применить к решению задачи метод математической индукции. Чтобы не отвлекать ваше внимание на второстепенные детали разбора решения, возьмем прежний пример.

Пример 4

Докажите, что 9 n - 12 n + 7 делится на 4 при любом натуральном n .

Решение

Начнем с установления того, что при значении n = 1 значение выражения 9 n - 12 n + 7
можно будет разделить на 4 без остатка.

Получаем: 9 1 - 12 · 1 + 7 = 4 . 4 делится на 4 без остатка.

Теперь мы можем предположить, что при значении n = k значение выражения
9 n - 12 n + 7 будет делиться на 4 . Фактически, мы будем работать с выражением 9 k - 12 k + 7 , которое должно делиться на 4 .

Нам необходимо доказать, что 9 n - 12 n + 7 при n = k + 1 будет делиться на 4 с учетом того, что 9 k - 12 k + 7 ​​​​​ делится на 4:

9 k + 1 - 12 (k + 1) + 7 = 9 · 9 k - 12 k - 5 = 9 · 9 k - 12 k + 7 + 96 k - 68 = = 9 · 9 k - 12 k + 7 + 4 · 24 k - 17

Мы получили сумму, в которой первое слагаемое 9 · 9 k - 12 k + 7 делится на 4 в связи с нашим предположением о том, что 9 k - 12 k + 7 делится на 4 , а второе слагаемое 4 · 24 k - 17 содержит множитель 4 , в связи с чем также делится на 4 . Это значит, что вся сумма делится на 4 .

Ответ: мы доказали, что 9 n - 12 n + 7 делится на 4 при любом натуральном значении n методом математической индукции.

Мы можем использовать еще один подход для того, чтобы доказать делимость некоторого выражения на 4 . Этот подход предполагает:

  • доказательство факта того, что значение данного выражения с переменной n делится на 4 при n = 4 · m , n = 4 · m + 1 , n = 4 · m + 2 и n = 4 · m + 3 , где m – целое число;
  • вывод о доказанности делимости данного выражения на 4 для любого целого числа n .
Пример 5

Докажите, что значение выражения n · n 2 + 1 · n + 3 · n 2 + 4 при любом целом n делится на 4 .

Решение

Если предположить, что n = 4 · m , получаем:

4 m · 4 m 2 + 1 · 4 m + 3 · 4 m 2 + 4 = 4 m · 16 m 2 + 1 · 4 m + 3 · 4 · 4 m 2 + 1

Полученное произведение содержит множитель 4 , все остальные множители представлены целыми числами. Это дает нам основание предполагать, что все произведение делится на 4 .

Если предположить, что n = 4 · m + 1 , получаем:

4 m + 1 · 4 m + 1 2 + 1 · 4 m + 1 + 3 · 4 m + 1 2 + 4 = = (4 m · 1) + 4 m + 1 2 + 1 · 4 m + 1 · 4 m + 1 2 + 4

И опять в произведении, которое мы получили в ходе преобразований,
содержится множитель 4 .

Это значит, что выражение делится на 4 .

Если предположить, что n = 4 · m + 2 , то:

4 m + 2 · 4 m + 2 2 + 1 · 4 m + 2 + 3 · 4 m + 2 2 + 4 = = 2 · 2 m + 1 · 16 m 2 + 16 m + 5 · (4 m + 5) · 8 · (2 m 2 + 2 m + 1)

Здесь в произведении мы получили множитель 8 , который можно без остатка поделить на 4 . Это значит, что все произведение делится на 4 .

Если предположить, что n = 4 · m + 3 , получаем:

4 m + 3 · 4 m + 3 2 + 1 · 4 m + 3 + 3 · 4 m + 3 2 + 4 = = 4 m + 3 · 2 · 8 m 2 + 12 m + 5 · 2 · 2 m + 3 · 16 m 2 + 24 m + 13 = = 4 · 4 m + 3 · 8 m 2 + 12 m + 5 · 16 m 2 + 24 m + 13

Произведение содержит множитель 4 , значит делится на 4 без остатка.

Ответ: мы доказали, что исходное выражение делится на 4 при любом n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Приступим к рассмотрению темы «Признак делимости на 3 ». Начнем с формулировки признака, приведем доказательство теоремы. Затем рассмотрим основные подходы к установлению делимости на 3 чисел, значение которых задано некоторым выражением. В разделе приведен разбор решения основных типов задач, основанных на применении признака делимости на 3 .

Признак делимости на 3 , примеры

Формулируется признак делимости на 3 просто: целое число будет делиться на 3 без остатка, если сумма входящих в его состав цифр делится на 3 . Если суммарное значение всех цифр, которые входят в состав целого числа, на 3 не делится, то и само исходное число на 3 не делится. Получить сумму всех входящих в целое число цифр можно с помощью сложения натуральных чисел.

Теперь рассмотрим примеры применения признака делимости на 3 .

Пример 1

Делится ли на 3 число - 42 ?

Решение

Для того, чтобы ответить на этот вопрос, сложим все цифры, входящие в состав числа - 42: 4 + 2 = 6 .

Ответ: согласно признаку делимости, раз сумма цифр, входящих с восстав исходного числа, делится на три, то и само исходное число делится на 3 .

Для того, чтобы ответить на вопрос о том, делится ли на 3 число 0 , нам понадобится свойство делимости, согласно которому нуль делится на любое целое число. Получается, что нуль делится на три.

Существуют задачи, для решения которых прибегать в признаку делимости на 3 необходимо несколько раз.

Пример 2

Покажите, что число 907 444 812 делится на 3 .

Решение

Найдем сумму всех цифр, которые образуют запись исходного числа: 9 + 0 + 7 + 4 + 4 + 4 + 8 + 1 + 2 = 39 . Теперь нам нужно определить, делится ли на 3 число 39 . Еще раз складываем цифры, входящие в состав этого числа: 3 + 9 = 12 . Нам осталось провести сложение цифр еще раз для того, чтобы получить окончательный ответ: 1 + 2 = 3 . Число 3 делится на 3

Ответ: исходное число 907 444 812 также делится на 3 .

Пример 3

Делится ли на 3 число − 543 205 ?

Решение

Посчитаем сумму цифр, входящих в состав исходного числа: 5 + 4 + 3 + 2 + 0 + 5 = 19 . Теперь посчитаем сумму цифр полученного числа: 1 + 9 = 10 . Для того, чтобы получить окончательный ответ, найдем результат еще одного сложения: 1 + 0 = 1 .
Ответ: единица на 3 не делится, значит и исходное число на 3 не делится.

Для того, чтобы определить, делится ли данное число на 3 без остатка, мы можем провести деление данного числа на 3 . Если разделить число − 543 205 из рассмотренного выше примера столбиком на три, то в ответе мы не получим целого числа. Это точно также значит, что − 543 205 на 3 без остатка не делится.

Доказательство признака делимости на 3

Здесь нам понадобятся следующие навыки: разложение числа по разрядам и правило умножения на 10 , 100 и т.д. Для того, чтобы провести доказательство, нам необходимо получить представление числа a вида , где a n , a n − 1 , … , a 0 – это цифры, которые располагаются слева направо в записи числа.

Приведем пример с использованием конкретного числа: 528 = 500 + 20 + 8 = 5 · 100 + 2 · 10 + 8 .

Запишем ряд равенств: 10 = 9 + 1 = 3 · 3 + 1 , 100 = 99 + 1 = 33 · 3 + 1 , 1 000 = 999 + 1 = 333 · 3 + 1 и проч.

А теперь подставим эти равенства вместо 10 , 100 и 1000 в равенства, приведенные ранее a = a n · 10 n + a n - 1 · 10 n - 1 + … + a 2 · 10 2 + a 1 · 10 + a 0 .

Так мы пришли к равенству:

a = a n · 10 n + … + a 2 · 100 + a 1 · 10 + a 0 = = a n · 33 . . . . 3 · 3 + 1 + … + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0

А теперь применим свойства сложения и свойства умножения натуральных чисел для того, чтобы переписать полученное равенство следующим образом:

a = a n · 33 . . . 3 · 3 + 1 + . . . + + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0 = = 3 · 33 . . . 3 · a n + a n + . . . + + 3 · 33 · a 2 + a 2 + 3 · 3 · a 1 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + . . . + + 3 · 33 · a 2 + 3 · 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + … + 33 · a 2 + 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0

Выражение a n + . . . + a 2 + a 1 + a 0 - это сумма цифр исходного числа a . Введем для нее новое краткое обозначение А . Получаем: A = a n + . . . + a 2 + a 1 + a 0 .

В этом случае представление числа a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A принимает такой вид, который нам будет удобно использовать для доказательства признака делимости на 3 .

Определение 1

Теперь вспомним следующие свойства делимости:

  • необходимым и достаточным условием для того, чтобы целое число a делилось на целое число
    ​​​​​​ b , является условие, по которому модуль числа a делится на модуль числа b ;
  • если в равенстве a = s + t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Мы заложили основу для того, чтобы провести доказательство признака делимости на 3 . Теперь же сформулируем этот признак в виде теоремы и докажем ее.

Теорема 1

Для того, чтобы утверждать, что целое число a делится на 3 , нам необходимо и достаточно, чтобы сумма цифр, которая образует запись числа a , делилась на 3 .

Доказательство 1

Если взять значение a = 0 , то теорема очевидна.

Если ы возьмем число a , отличное от нуля, то модуль числа a будет натуральным числом. Это позволяет нам записать следующее равенство:

a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A , где A = a n + . . . + a 2 + a 1 + a 0 - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то
33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 - целое число, тогда по определению делимости произведение 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 делится на 3 при любых a 0 , a 1 , … , a n .

Если сумма цифр числа a делится на 3 , то есть, A делится на 3 , то в силу свойства делимости, указанного перед теоремой, a делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и a делится на 3 , тогда в силу того же свойства делимости число
A делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Целые числа могут быть заданы как значение некоторого выражения, которое содержит переменную, при определенном значении этой переменной. Так, при некотором натуральном n значение выражения 4 n + 3 n - 1 является натуральным числом. В этом случае непосредственное деление на 3 не может дать нам ответ на вопрос, делится ли число на 3 . Применение признака делимости на 3 также может быть затруднено. Рассмотрим примеры таких задач и разберем методы их решения.

Для решения таких задач может быть применено несколько подходов. Суть одного из них заключается в следующем:

  • представляем исходное выражение как произведение нескольких множителей;
  • выясняем, может ли хотя бы один из множителей делиться на 3 ;
  • на основе свойства делимости делаем вывод о том, что все произведение делится на 3 .

В ходе решения часто приходится прибегать к использованию формулы бинома Ньютона.

Пример 4

Делится ли значение выражения 4 n + 3 n - 1 на 3 при любом натуральном n ?

Решение

Запишем равенство 4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 . Применим формулу бинома Ньютона бинома Ньютона:

4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 = = (C n 0 · 3 n + C n 1 · 3 n - 1 · 1 + . . . + + C n n - 2 · 3 2 · 1 n - 2 + C n n - 1 · 3 · 1 n - 1 + C n n · 1 n) + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + n · 3 + 1 + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + 6 n - 3

Теперь вынесем 3 за скобки: 3 · 3 n - 1 + C n 1 · 3 n - 2 + . . . + C n n - 2 · 3 + 2 n - 1 . Полученное произведение содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Это позволяет нам утверждать, что полученное произведение и исходное выражение 4 n + 3 n - 1 делится на 3 .

Ответ: Да.

Также мы можем применить метод математической индукции.

Пример 5

Докажите с использованием метода математической индукции, что при любом натуральном
n значение выражения n · n 2 + 5 делится на 3 .

Решение

Найдем значение выражения n · n 2 + 5 при n = 1 : 1 · 1 2 + 5 = 6 . 6 делится на 3 .

Теперь предположим, что значение выражения n · n 2 + 5 при n = k делится на 3 . Фактически, нам придется работать с выражением k · k 2 + 5 , которое, как мы ожидаем, будет делиться на 3 .

Учитывая, что k · k 2 + 5 делится на 3 , покажем, что значение выражения n · n 2 + 5 при n = k + 1 делится на 3 , то есть, покажем, что k + 1 · k + 1 2 + 5 делится на 3 .

Выполним преобразования:

k + 1 · k + 1 2 + 5 = = (k + 1) · (k 2 + 2 k + 6) = = k · (k 2 + 2 k + 6) + k 2 + 2 k + 6 = = k · (k 2 + 5 + 2 k + 1) + k 2 + 2 k + 6 = = k · (k 2 + 5) + k · 2 k + 1 + k 2 + 2 k + 6 = = k · (k 2 + 5) + 3 k 2 + 3 k + 6 = = k · (k 2 + 5) + 3 · k 2 + k + 2

Выражение k · (k 2 + 5) делится на 3 и выражение 3 · k 2 + k + 2 делится на 3 , поэтому их сумма делится на 3 .

Так мы доказали, что значение выражения n · (n 2 + 5) делится на 3 при любом натуральном n .

Теперь разберем подход к доказательству делимости на 3 , которых основан на следующем алгоритме действий:

  • показываем, что значение данного выражения с переменной n при n = 3 · m , n = 3 · m + 1 и n = 3 · m + 2 , где m – произвольное целое число, делится на 3 ;
  • делаем вывод о том, что выражение будет делиться на 3 при любом целом n .

Для того, чтобы не отвлекать внимание от второстепенных деталей, применим данный алгоритм к решению предыдущего примера.

Пример 6

Покажите, что n · (n 2 + 5) делится на 3 при любом натуральном n .

Решение

Предположим, что n = 3 · m . Тогда: n · n 2 + 5 = 3 m · 3 m 2 + 5 = 3 m · 9 m 2 + 5 . Произведение, которое мы получили, содержит множитель 3 , следовательно само произведение делится на 3 .

Предположим, что n = 3 · m + 1 . Тогда:

n · n 2 + 5 = 3 m · 3 m 2 + 5 = (3 m + 1) · 9 m 2 + 6 m + 6 = = 3 m + 1 · 3 · (2 m 2 + 2 m + 2)

Произведение, которое мы получили, делится на 3 .

Предположим, что n = 3 · m + 2 . Тогда:

n · n 2 + 5 = 3 m + 1 · 3 m + 2 2 + 5 = 3 m + 2 · 9 m 2 + 12 m + 9 = = 3 m + 2 · 3 · 3 m 2 + 4 m + 3

Это произведение также делится на 3 .

Ответ: Так мы доказали, что выражение n · n 2 + 5 делится на 3 при любом натуральном n .

Пример 7

Делится ли на 3 значение выражения 10 3 n + 10 2 n + 1 при некотором натуральном n .

Решение

Предположим что n = 1 . Получаем:

10 3 n + 10 2 n + 1 = 10 3 + 10 2 + 1 = 1000 + 100 + 1 = 1104

Предположим, что n = 2 . Получаем:

10 3 n + 10 2 n + 1 = 10 6 + 10 4 + 1 = 1000 000 + 10000 + 1 = 1010001

Так мы можем сделать вывод, что при любом натуральном n мы будем получать числа, которые делятся на 3 . Это значит, что 10 3 n + 10 2 n + 1 при любом натуральном n делится на 3 .

Ответ: Да

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,