Параллельные миры действительно существуют. Группа ученых опубликовала три основных доказательства существования параллельных вселенных Существование параллельных реальностей

  • Дата: 17.08.2023

Эволюция снабдила нас интуицией в отношении повседневной физики, жизненно важной для наших далеких предков; поэтому, как только мы выходим за рамки повседневности, мы вполне можем ожидать странностей.

Простейшая и самая популярная космологическая модель предсказывает, что у нас есть двойник в галактике, удаленной на расстояние порядка 10 в степени $10^{28}$ метров. Расстояние столь велико, что находится за пределами досягаемости астрономических наблюдений, но это не делает нашего двойника менее реальным. Предположение основано на теории вероятности без привлечения представлений современной физики. Принимается лишь допущение, что пространство бесконечно и заполнено материей. Может существовать множество обитаемых планет, в том числе таких, где живут люди с такой же внешностью, такими же именами и воспоминаниями, прошедшие те же жизненные перипетии, что и мы.

Но нам никогда не будет дано увидеть наши иные жизни. Самое далекое расстояние, на которое мы способны заглянуть, это то, которое может пройти свет за 14 млрд. лет, протекших с момента Большого взрыва. Расстояние между самыми далекими от нас видимыми объектами составляет около $43\cdot 10^{26}$ м; оно и определяет доступную для наблюдения область Вселенной, называемую объемом Хаббла, или объемом космического горизонта, или просто Вселенной. Вселенные наших двойников представляют собой сферы таких же размеров с центрами на их планетах. Это самый простой пример параллельных вселенных, каждая из которых является лишь малой частью сверхвселенной.

Само определение «вселенная» наводит на мысль, что оно навсегда останется в области метафизики. Однако граница между физикой и метафизикой определяется возможностью экспериментальной проверки теорий, а не существованием неподдающихся наблюдениям объектов. Границы физики постоянно расширяются, включая все более отвлеченные (и бывшие до того метафизическими) представления, например, о шаровидной Земле, невидимых электромагнитных полях, замедлении времени при больших скоростях, суперпозиции квантовых состояний, искривлении пространства и черных дырах. В последние годы к этому перечню добавилось и представление о сверхвселенной. Оно основано на проверенных теориях – квантовой механике и теории относительности – и отвечает обоим основным критериям эмпирической науки: позволяет делать прогнозы и может быть опровергнуто. Ученые рассматривают четыре типа параллельных вселенных. Главный вопрос не в том, существует ли сверхвселенная, а сколько уровней она может иметь.

Уровень I
За нашим космическим горизонтом

Параллельные вселенные наших двойников составляют первый уровень сверхвселенной. Это наименее спорный тип. Мы все признаем существование вещей, которых мы не видим, но могли бы увидеть, переместившись в другое место или просто подождав, как ждем появления корабля из(за горизонта. Подобный статус имеют объекты, находящиеся за пределами нашего космического горизонта. Размер доступной наблюдению области Вселенной ежегодно увеличивается на один световой год, поскольку нас достигает свет, исходящий из все более далеких областей, за которыми скрывается бесконечность, которую еще предстоит увидеть. Мы, вероятно, умрем задолго до того, как наши двойники окажутся в пределах досягаемости для наблюдений, но если расширение Вселенной поможет, наши потомки смогут увидеть их в достаточно мощные телескопы.

Уровень I сверхвселенной представляется до банальности очевидным. Как может пространство не быть бесконечным? Разве есть где(нибудь знак «Берегись! Конец пространства»? Если существует конец пространства, то что находится за ним? Однако теория гравитации Эйнштейна поставила это интуитивное представление под сомнение. Пространство может быть конечным, если оно имеет положительную кривизну или необычную топологию. Сферическая, тороидальная или «кренделевидная» вселенная может иметь конечный объем, не имея границ. Фоновое космическое микроволновое излучение позволяет проверить существование подобных структур. Однако до сих пор факты говорят против них. Данным соответствует модель бесконечной вселенной, а на все прочие варианты наложены строгие ограничения.

Другой вариант таков: пространство бесконечно, но материя сосредоточена в ограниченной области вокруг нас. В одном из вариантов некогда популярной модели «островной Вселенной» принимается, что на больших масштабах вещество разрежается и имеет фрактальную структуру. В обоих случаях почти все вселенные в сверхвселенной уровня I должны быть пусты и безжизненны. Последние исследования трехмерного распределения галактик и фонового (реликтового) излучения показали, что распределение вещества стремится к однородному в больших масштабах и не образует структур размером более 1024 м. Если такая тенденция сохраняется, то пространство за пределами наблюдаемой Вселенной должно изобиловать галактиками, звездами и планетами.

Для наблюдателей в параллельных вселенных первого уровня действуют те же законы физики, что и для нас, но при иных стартовых условиях. Согласно современным теориям, процессы, протекавшие на начальных этапах Большого взрыва, беспорядочно разбросали вещество, так что была вероятность возникновения любых структур. Космологи принимают, что наша Вселенная с почти однородным распределением вещества и начальными флуктуациями плотности порядка 1/105 весьма типична (по крайней мере, среди тех, в которых есть наблюдатели). Оценки на основе этого допущения показывают, что ваша ближайшая точная копия находится на расстоянии 10 в степени $10^{28}$ м. На расстоянии 10 в степени $10^{92}$ м должна располагаться сфера радиусом 100 световых лет, идентичная той, в центре которой находимся мы; так что все, что в следующем веке увидим мы, увидят и находящиеся там наши двойники. На расстоянии около 10 в степени $10^{118}$ м от нас должен существовать объем Хаббла, идентичный нашему.

Эти оценки выведены путем подсчета возможного числа квантовых состояний, которые может иметь объем Хаббла, если его температура не превышает 108 К. Число состояний можно оценить, задавшись вопросом: сколько протонов способен вместить объем Хаббла с такой температурой? Ответ – $10^{118}$ . Однако каждый протон может либо присутствовать, либо отсутствовать, что дает 2 в степени $10^{118}$ возможных конфигураций. «Короб», содержащий такое количество объемов Хаббла, охватывает все возможности. Размер его составляет 10 в степени $10^{118}$ м. За его пределами вселенные, включая нашу, должны повторяться. Примерно те же цифры можно получить на основе термодинамических или квантовогравитационных оценок общего информационного содержания Вселенной. Впрочем, наш ближайший двойник скорее всего находится к нам ближе, чем дают эти оценки, поскольку процесс формирования планет и эволюция жизни благоприятствуют этому. Астрономы полагают, что наш объем Хаббла содержит по крайней мере $10^{20}$ пригодных для жизни планет, некоторые из которых могут быть похожи на Землю.

ОБЗОР: СВЕРХВСЕЛЕННЫЕ

  • Астрономические наблюдения свидетельствуют: параллельные вселенные уже не метафора. Пространство, по-видимому, бесконечно, а значит, все возможное становится реальным. За пределами досягаемости телескопов существуют области пространства, идентичные нашей и в этом смысле являющиеся параллельными вселенными. Ученые даже могут вычислить, как далеко они от нас находятся.
  • Когда же космологи рассматривают некоторые спорные теории, то приходят к выводу, что другие вселенные могут иметь совершенно иные свойства и физические законы. Существование таких вселенных может объяснить особенности нашей Вселенной и ответить на фундаментальные вопросы о природе времени и познаваемости физического мира.

В современной космологии понятие сверхвселенной уровня I широко применяется для проверки теории. Рассмотрим, как используют космологи реликтовое излучение для того, чтобы отвергнуть модель конечной сферической геометрии. Горячие и холодные «пятна» на картах реликтового излучения имеют характерный размер, зависящий от кривизны пространства. Так вот, размер наблюдаемых пятен слишком мал, чтобы согласоваться со сферической геометрией. Их средний размер случайным образом меняется от одного объема Хаббла к другому, поэтому не исключено, что наша Вселенная сферическая, но имеет аномально малые пятна. Когда космологи говорят, что они исключают сферическую модель на доверительном уровне 99,9%, они имеют в виду, что если модель верна, то меньше чем один объем Хаббла из тысячи будет характеризоваться столь малыми пятнами, как наблюдаемые.

Из этого следует, что теория сверхвселенной поддается проверке и может быть отвергнута, хотя мы и не в состоянии видеть иные вселенные. Главное – предсказать, что представляет собой ансамбль параллельных вселенных, и найти распределение вероятностей или то, что математики называют мерой ансамбля. Наша Вселенная должна быть одной из наиболее вероятных. Если же нет, если в рамках теории сверхвселенной наша Вселенная окажется маловероятной, то эта теория столкнется с трудностями. Как мы увидим далее, проблема меры может стать весьма острой.

Уровень II
Другие постинфляционные домены

Если вам трудно было представить сверхвселенную уровня I, то попытайтесь вообразить бесконечное множество таких сверхвселенных, часть которых имеет иную размерность пространства(времени и характеризуется иными физическими константами. В совокупности они составляют сверхвселенную уровня II, предсказанную теорией хаотической вечной инфляции.

Теория инфляции – это обобщение теории Большого взрыва, позволяющее устранить недочеты последней, например, неспособность объяснить, почему Вселенная столь велика, однородна и плоска. Быстрое растяжение пространства в давние времена позволяет объяснить эти и многие другие свойства Вселенной. Такое растяжение предсказывается широким классом теорий элементарных частиц, и все имеющиеся свидетельства подтверждают его. Выражение «хаотическая вечная» по отношению к инфляции указывает на то, что происходит в самых крупных масштабах. В целом пространство постоянно растягивается, но в некоторых областях расширение прекращается, и возникают отдельные домены, как изюминки в поднимающемся тесте. Появляется бесконечное множество таких доменов, и каждый из них служит зародышем сверхвселенной уровня I, заполненной веществом, рожденным энергией поля, вызывающего инфляцию.

Соседние домены удалены от нас более чем на бесконечность, в том смысле, что их невозможно достичь, даже если вечно двигаться со скоростью света, поскольку пространство между нашим доменом и соседними растягивается быстрее, чем можно перемещаться в нем. Наши потомки никогда не увидят своих двойников на уровне II. А если расширение Вселенной ускоряется, как о том свидетельствуют наблюдения, то они никогда не увидят своих двойников даже на уровне I.

Сверхвселенная уровня II гораздо разнообразнее сверхвселенной уровня I. Домены различаются не только начальными условиями, но и своими фундаментальными свойствами. У физиков преобладает мнение, что размерность пространства-времени, свойства элементарных частиц и многие так называемые физические константы не встроены в физические законы, а являются результатом процессов, известных как нарушение симметрии. Предполагают, что пространство в нашей Вселенной некогда имело девять равноправных измерений. В начале космической истории три из них приняли участие в расширении и стали теми тремя измерениями, которые характеризуют сегодняшнюю Вселенную. Шесть остальных сейчас невозможно обнаружить либо потому, что они остались микроскопическими, сохранив тороидальную топологию, либо потому, что вся материя сосредоточена в трехмерной поверхности (мембране, или просто бране) в девятимерном пространстве. Так была нарушена исходная симметрия измерений. Квантовые флуктуации, обусловливающие хаотическую инфляцию, могли вызвать различные нарушения симметрии в разных кавернах. Одни могли стать четырехмерными; другие – содержать только два, а не три поколения кварков; а третьи – иметь более сильную космологическую постоянную, чем наша Вселенная.


Космологические данные позволяют сделать вывод, что пространство существует и за пределами обозреваемой нами Вселенной. С помощью спутника WMAP были измерены флуктуации реликтового излучения (слева). Самые сильные имеют угловой размер чуть более полуградуса (левый график), откуда следует, что пространство очень велико или бесконечно. (Правда, некоторые космологи считают, что выпадающая точка слева на графике говорит о конечности пространства.) Данные спутника и обзор красных смещений галактик 2dF свидетельствуют, что в очень больших масштабах пространство заполнено веществом однородно (правый график), а значит, другие вселенные должны быть в основном подобны нашей.

Другой путь возникновения сверхвселенной уровня II можно представить как цикл рождений и разрушений вселенных. В 1930(е гг. физик Ричард Толмен (Richard C. Tolman) высказал эту идею, а недавно Пол Стейнхардт (Paul J. Steinhardt) из Принстонского университета и Нил Тьюрок (Neil Turok) из Кембриджского университета развили ее. Модель Стейнхардта и Тьюрока предусматривает вторую трехмерную брану, совершенно параллельную нашей и лишь смещенную относительно нее в измерении более высокого порядка. Эту параллельную вселенную нельзя считать отдельной, поскольку она взаимодействует с нашей. Однако ансамбль вселенных – прошлых, нынешних и будущих, который эти браны образуют, представляет собой сверхвселенную с разнообразием, по(видимому, близким к возникающему в результате хаотической инфляции. Еще одну гипотезу сверхвселенной предложил физик Ли Смолин (Lee Smolin) из Института Периметра в г. Ватерлоо (пров. Онтарио, Канада). Его сверхвселенная по разнообразию близка к уровню II, но она мутирует и порождает новые вселенные посредством черных дыр, а не бран.

Хотя мы и не можем взаимодействовать с параллельными вселенными уровня II, космологи судят об их существовании по косвенным признакам, поскольку они могут быть причиной странных совпадений в нашей Вселенной. Например, в гостинице вам предоставляют номер 1967, и вы отмечаете, что родились в 1967 г. «Какое совпадение», – говорите вы. Однако, подумав, приходите к выводу, что это не так уж и удивительно. В гостинице сотни номеров, и вам не пришло бы в голову задумываться о чем-либо, если бы предложили номер, ничего для вас не значащий. Если бы вы ничего не знали о гостиницах, то для объяснения этого совпадения вы могли бы предположить, что в гостинице существуют и другие номера.

В качестве более близкого примера рассмотрим массу Солнца. Как известно, светимость звезды определяется ее массой. С помощью законов физики мы можем вычислить, что жизнь на Земле может существовать лишь при условии, что масса Солнца лежит в пределах: от 1,6 х1030 до 2,4 х1030 кг. В противном случае климат Земли был бы холоднее, чем на Марсе, или жарче, чем на Венере. Измерения массы Солнца дали значение 2,0х1030 кг. На первый взгляд, попадание массы Солнца в интервал значений, обеспечивающий жизнь на Земле, является случайным. Массы звезд занимают диапазон от 1029 до 1032 кг; если бы Солнце приобрело свою массу случайно, то шанс попасть именно в оптимальный для нашей биосферы интервал был бы крайне мал. Кажущееся совпадение можно объяснить, предположив существование ансамбля (в данном случае – множества планетных систем) и фактора отбора (наша планета должна быть пригодной для жизни). Такие критерии отбора, связанные с наблюдателем, называют антропными; и хотя упоминание о них обычно вызывает полемику, все же большинство физиков согласно, что пренебрегать этими критериями при отборе фундаментальных теорий нельзя.

А какое отношение все эти примеры имеют к параллельным вселенным? Оказывается, небольшое изменение физических констант, определяемых нарушением симметрии, приводит к качественно иной вселенной – такой, в которой мы бы не могли существовать. Будь масса протона больше всего на 0,2%, протоны распадались бы с образованием нейтронов, делая атомы нестабильными. Будь силы электромагнитного взаимодействия слабее на 4%, не существовало бы водорода и обычных звезд. Будь слабое взаимодействие еще слабее, не было бы водорода; а будь оно сильнее, сверхновые не могли бы заполнять межзвездное пространство тяжелыми элементами. Будь космологическая постоянная заметно больше, Вселенная невероятно раздулась бы еще до того, как смогли образоваться галактики.

Приведенные примеры позволяют ожидать существование параллельных вселенных с иными значениями физических констант. Теория сверхвселенной второго уровня предсказывает, что физики никогда не смогут вывести значения этих констант из фундаментальных принципов, а смогут лишь рассчитывать распределение вероятностей различных наборов констант в совокупности всех вселенных. При этом результат должен согласоваться с нашим существованием в одной из них.

Уровень III
Квантовое множество вселенных

Сверхвселенные уровней I и II содержат параллельные вселенные, чрезвычайно удаленные от нас за пределы возможностей астрономии. Однако следующий уровень сверхвселенной лежит прямо вокруг нас. Он возникает из знаменитой и весьма спорной интерпретации квантовой механики – идеи о том, что случайные квантовые процессы заставляют вселенную «размножаться», образуя множество своих копий – по одной для каждого возможного результата процесса.

В начале ХХ в. квантовая механика объяснила природу атомного мира, который не подчинялся законам классической ньютоновской механики. Несмотря на очевидные успехи, среди физиков шли жаркие споры о том, в чем же истинный смысл новой теории. Она определяет состояние Вселенной не в таких понятиях классической механики, как положения и скорости всех частиц, а через математический объект, называемый волновой функцией. Согласно уравнению Шрёдингера, это состояние изменяется с течением времени таким образом, который математики определяют термином «унитарный». Он означает, что волновая функция вращается в абстрактном бесконечномерном пространстве, называемом гильбертовым. Хотя квантовую механику часто определяют как принципиально случайную и неопределенную, волновая функция эволюционирует вполне детерминистским образом. В отношении нее нет ничего случайного или неопределенного.

Самое трудное – связать волновую функцию с тем, что мы наблюдаем. Многие допустимые волновые функции соответствуют противоестественным ситуациям вроде той, когда кошка одновременно и мертва, и жива в виде так называемой суперпозиции. В 20(е гг. XX в. физики обошли эту странность, постулировав, что волновая функция коллапсирует к некоторому определенному классическому исходу, когда кто(либо осуществляет наблюдение. Это дополнение позволило объяснить результаты наблюдений, но превратило изящную унитарную теорию в неряшливую и не унитарную. Принципиальная случайность, приписываемая обычно квантовой механике, является следствием именно этого постулата.

Со временем физики отказались от этой точки зрения в пользу другой, предложенной в 1957 г. выпускником Принстонского университета Хью Эвереттом (Hugh Everett III). Он показал, что можно обойтись и без постулата о коллапсе. Чистая квантовая теория не налагает никаких ограничений. Хотя она и предсказывает, что одна классическая реальность постепенно расщепляется на суперпозицию нескольких таких реальностей, наблюдатель субъективно воспринимает это расщепление просто как небольшую хаотичность с распределением вероятностей, в точности совпадающим с тем, которое давал старый постулат коллапса. Эта суперпозиция классических вселенных и есть сверхвселенная уровня III.

Более сорока лет такая интерпретация смущала ученых. Однако физическую теорию легче понять, сравнивая две точки зрения: внешнюю, с позиции физика, изучающего математические уравнения (подобно птице, оглядывающей пейзаж с высоты своего полета); и внутреннюю, с позиции наблюдателя (назовем его лягушкой), живущего на ландшафте, обозреваемом птицей.

С точки зрения птицы, сверхвселенная уровня III является простой. Существует всего одна волновая функция, которая плавно эволюционирует во времени без расщепления и параллелизма. Абстрактный квантовый мир, описываемый эволюционирующей волновой функцией, содержит в себе огромное количество непрерывно расщепляющихся и сливающихся линий параллельных классических историй, а также ряд квантовых явлений, не поддающихся описанию в рамках классических представлений. Но с точки зрения лягушки, можно видеть только малую часть этой реальности. Она может видеть вселенную уровня I, однако процесс нарушения когерентности, подобный коллапсу волновой функции, но с сохранением унитарности, не позволяет ей видеть параллельные копии самой себя на уровне III.

Когда наблюдателю задают вопрос, на который он должен быстро дать ответ, квантовый эффект в его мозге приводит к суперпозиции решений вроде такой: «продолжать читать статью» и «бросить читать статью». С точки зрения птицы, акт принятия решения заставляет человека размножиться на копии, одни из которых продолжают читать, а другие прекращают чтение. Однако с внутренней точки зрения, ни один из двойников не знает о существовании других и воспринимает расщепление просто как небольшую неопределенность, некоторую вероятность продолжения или прекращения чтения.

Сколь бы странным это ни казалось, но точно такая же ситуация возникает даже в супервселенной уровня I. Очевидно, вы решили продолжать чтение, но кто(то из ваших двойников в далекой галактике отложил журнал после первого же абзаца. Уровни I и III различаются только тем, где находятся ваши двойники. На уровне I они живут где(то далеко, в добром старом трехмерном пространстве, а на уровне III – на другой квантовой ветви бесконечномерного гильбертова пространства.

Существование уровня III возможно лишь при условии, что эволюция волновой функции во времени унитарна. До сих пор эксперименты не выявили ее отклонений от унитарности. В последние десятилетия ее подтверждали для всех более крупных систем, включая фуллерен С60 и оптические волокна километровой длины. В теоретическом плане положение об унитарности было подкреплено открытием нарушения когерентности. Некоторые теоретики, работающие в области квантовой гравитации, ставят ее под сомнение. В частности, предполагается, что испаряющиеся черные дыры могут разрушать информацию, а это не унитарный процесс. Однако недавние достижения в теории струн позволяют считать, что даже квантовое тяготение является унитарным. Если это так, то черные дыры не разрушают информацию, а просто передают ее куда-то.

Если физика унитарна, стандартная картина влияния квантовых флуктуаций на начальных этапах Большого взрыва должна быть изменена. Эти флуктуации не случайным образом определяют суперпозицию всех возможных начальных условий, которые сосуществуют одновременно. При этом нарушение когерентности заставляет начальные условия вести себя классическим образом на различных квантовых ветвях. Ключевое положение гласит: распределение исходов на разных квантовых ветвях одного объема Хаббла (уровень III) идентично распределению исходов в разных объемах Хаббла одной квантовой ветви (уровень I). Это свойство квантовых флуктуаций известно в статистической механике как эргодичность.

Эти же рассуждения применимы к уровню II. Процесс нарушения симметрии приводит не к однозначному исходу, а к суперпозиции всех исходов, которые быстро расходятся по своим отдельным путям. Таким образом, если физические константы, размерность пространства(времени и проч. могут различаться в параллельных квантовых ветвях на уровне III, то они будут так же различаться в параллельных вселенных на уровне II.

Иными словами, сверхвселенная уровня III не добавляет ничего нового к тому, что имеется на уровнях I и II, лишь большее число копий тех же самых вселенных – такие же исторические линии развиваются снова и снова на разных квантовых ветвях. Горячие споры вокруг теории Эверетта, похоже, скоро утихнут в результате открытия столь же грандиозных, но менее спорных сверхвселенных уровней I и II.

Приложения этих идей глубоки. Например, такой вопрос: происходит ли экспоненциальное увеличение числа вселенных со временем? Ответ неожиданный: нет. С точки зрения птицы, существует только одна квантовая вселенная. А каково число отдельных вселенных в данный момент для лягушки? Это число заметно различающихся объемов Хаббла. Различия могут быть невелики: представьте себе планеты, движущиеся в иных направлениях, вообразите себя с кем(то другим в браке и т.д. На квантовом уровне существуют 10 в степени 10118 вселенных с температурой не выше 108 К. Число гигантское, но конечное.

Для лягушки эволюция волновой функции соответствует бесконечному движению от одного из этих 10 в степени $10^{118}$ состояний к другому. Сейчас вы находитесь во вселенной А, где и читаете это предложение. А теперь вы уже во вселенной В, где читаете следующее предложение. Иначе говоря, в В есть наблюдатель, идентичный наблюдателю во вселенной А, с той лишь разницей, что у него есть лишние воспоминания. В каждый момент существуют все возможные состояния, так что течение времени может происходить перед глазами наблюдателя. Эту мысль выразил в своем научнофантастическом романе «Город перестановок» (1994 г.) писатель Грег Иган (Greg Egan) и развили физик Дэвид Дойч (David Deutsch) из Оксфордского университета, независимый физик Джулиан Барбу (Julian Barbour) и др. Как видим, идея сверхвселенной может играть ключевую роль в понимании природы времени.

Уровень IV
Другие математические структуры

Начальные условия и физические константы в сверхвселенных уровней I, II и III могут различаться, но фундаментальные законы физики одинаковы. Почему мы на этом остановились? Почему не могут различаться сами физические законы? Как насчет вселенной, подчиняющейся классическим законам без каких(либо релятивистских эффектов? Как насчет времени, движущегося дискретными шагами, как в компьютере? А как насчет вселенной в виде пустого додекаэдра? В сверхвселенной уровня IV все эти альтернативы действительно существуют.

СВЕРХВСЕЛЕННАЯ УРОВНЯ IV
Вселенные могут различаться не только местоположением, космологическими свойствами или квантовыми состояниями, но и законами физики. Они существуют вне времени и пространства, и их почти невозможно изобразить. Человек может рассматривать их только абстрактно как статические скульптуры, представляющие математические структуры физических законов, которые управляют ими. Рассмотрим простую вселенную, состоящую из Солнца, Земли и Луны, подчиняющихся законам Ньютона. Для объективного наблюдателя такая вселенная представляется кольцом (орбита Земли, «размазанная» во времени), обернутым «оплеткой» (орбита Луны вокруг Земли). Другие формы олицетворяют иные физические законы (a, b, c, d). Этот подход позволяет разрешить ряд фундаментальных проблем физики.

О том, что такая сверхвселенная не является абсурдной, свидетельствует соответствие мира отвлеченных рассуждений нашему реальному миру. Уравнения и другие математические понятия и структуры – числа, векторы, геометрические объекты – описывают реальность с удивительным правдоподобием. И наоборот, мы воспринимаем математические структуры как реальные. Да они и отвечают фундаментальному критерию реальности: одинаковы для всех, кто их изучает. Теорема будет верна независимо от того, кто ее доказал – человек, компьютер или интеллектуальный дельфин. Другие любознательные цивилизации найдут те же математические структуры, какие знаем мы. Поэтому математики говорят, что они не создают, а открывают математические объекты.

Существуют две логичные, но диаметрально противоположные парадигмы соотношения математики и физики, возникшие еще в древние времена. Согласно парадигме Аристотеля, физическая реальность первична, а математический язык является лишь удобным приближением. В рамках парадигмы Платона, истинно реальны именно математические структуры, а наблюдатели воспринимают их несовершенно. Иными словами, эти парадигмы различаются пониманием того, что первично – лягушачья точка зрения наблюдателя (парадигма Аристотеля) или птичий взгляд с высоты законов физики (точка зрения Платона).

Парадигма Аристотеля – это то, как мы воспринимали мир с раннего детства, задолго то того, как впервые услышали о математике. Точка зрения Платона – это приобретенное знание. Современные физики(теоретики склоняются к ней, предполагая, что математика хорошо описывает Вселенную именно потому, что Вселенная математична по своей природе. Тогда вся физика сводится к решению математической задачи, и безгранично умный математик может лишь на основе фундаментальных законов рассчитать картину мира на уровне лягушки, т.е. вычислить, какие наблюдатели существуют во Вселенной, что они воспринимают и какие языки они изобрели для передачи своего восприятия.

Математическая структура – абстракция, неизменная сущность вне времени и пространства. Если бы история была кинофильмом, то математическая структура соответствовала не одному кадру, а фильму в целом. Возьмем для примера мир, состоящий из частиц нулевых размеров, распределенных в трехмерном пространстве. С точки зрения птицы, в четырехмерном пространстве(времени траектории частиц представляют собой «спагетти». Если лягушка видит частицы движущимися с постоянными скоростями, то птица видит пучок прямых, не сваренных «спагетти». Если лягушка видит две частицы, обращающиеся по орбитам, то птица видит две «спагеттины», свитые в двойную спираль. Для лягушки мир описывают законы движения и тяготения Ньютона, для птицы – геометрия «спагетти», т.е. математическая структура. Сама лягушка для нее – толстый их клубок, сложное переплетение которых соответствует группе частиц, хранящих и перерабатывающих информацию. Наш мир сложнее рассмотренного примера, и ученые не знают, какой из математических структур он соответствует.

В парадигме Платона заключен вопрос: почему наш мир таков, каков он есть? Для Аристотеля это бессмысленный вопрос: мир есть, и он таков! Но последователи Платона интересуются: а мог бы наш мир быть иным? Если Вселенная математична по сути, то почему в ее основе лежит только одна из множества математических структур? Похоже, что фундаментальная асимметрия заключена в самой сути природы.

Чтобы разгадать головоломку, я выдвинул предположение, что математическая симметрия существует: что все математические структуры реализуются физически, и каждая из них соответствует параллельной вселенной. Элементы этой сверхвселенной не находятся в одном и том же пространстве, но существуют вне времени и пространства. В большинстве из них, вероятно, нет наблюдателей. Гипотезу можно рассматривать как крайний платонизм, утверждающий, что математические структуры платоновского мира идей, или «умственного пейзажа» математика Руди Ракера (Rudy Rucker) из Университета Сан-Хосе, существуют в физическом смысле. Это сродни тому, что космолог Джон Барроу (John D. Barrow) из Кембриджского университета называл «p в небесах», философ Роберт Нозик (Robert Nozick) из Гарвардского университета описывал как «принцип плодовитости», а философ Дэвид Льюис (David K. Lewis) из Принстонского университета именовал «модальной реальностью». Уровень IV замыкает иерархию сверхвселенных, поскольку любая самосогласованная физическая теория может быть выражена в форме некой математической структуры.

Гипотеза о сверхвселенной уровня IV позволяет сделать несколько поддающихся проверке предсказаний. Как и на уровне II, она включает ансамбль (в данном случае – совокупность всех математических структур) и эффекты отбора. Занимаясь классификацией математических структур, ученые должны заметить, что структура, описывающая наш мир, является наиболее общей из тех, что согласуются с наблюдениями. Поэтому результаты наших будущих наблюдений должны стать наиболее общими из числа тех, которые согласуются с данными прежних исследований, а данные прежних исследований – самыми общими из тех, что вообще совместимы с нашим существованием.

Оценить степень общности – непростая задача. Одна из поразительных и обнадеживающих черт математических структур состоит в том, что свойства симметрии и инвариантности, обеспечивающие простоту и упорядоченность нашей Вселенной, как правило, являются общими. Математические структуры обычно обладают этими свойствами по умолчанию, и для избавления от них требуется введение сложных аксиом.

Что говорил Оккам?

Таким образом, теории параллельных вселенных имеют четырехуровневую иерархию, где на каждом следующем уровне вселенные все менее напоминают нашу. Они могут характеризоваться различными начальными условиями (уровень I), физическими константами и частицами (уровень II) или физическими законами (уровень IV). Забавно, что наибольшей критике в последние десятилетия подвергался уровень III как единственный, не вводящий качественно новых типов вселенных.

В грядущем десятилетии детальные измерения реликтового излучения и крупномасштабного распределения вещества во Вселенной позволят точнее определить кривизну и топологию пространства и подтвердить или опровергнуть существование уровня I. Эти же данные позволят получить сведения об уровне II путем проверки теории хаотической вечной инфляции. Успехи астрофизики и физики частиц высоких энергий помогут уточнить степень тонкой настройки физических констант, подкрепив или ослабив позиции уровня II.

Если усилия по созданию квантового компьютера будут успешными, появится дополнительный довод в пользу существования уровня III, поскольку для параллельных вычислений будет использоваться параллелизм этого уровня. Экспериментаторы ищут также свидетельства нарушения унитарности, которые позволят отвергнуть гипотезу о существовании уровня III. Наконец, успех или провал попытки решить главнейшую задачу современной физики – объединить общую теорию относительности с квантовой теорией поля – даст ответ на вопрос об уровне IV. Либо будет найдена математическая структура, точно описывающая нашу Вселенную, либо мы наткнемся на предел невероятной эффективности математики и будем вынуждены отказаться от гипотезы об уровне IV.

Итак, можно ли верить в параллельные вселенные? Основные доводы против их существования сводятся к тому, что это слишком расточительно и непостижимо. Первый аргумент состоит в том, что теории сверхвселенной уязвимы для «бритвы Оккама» (Уильям Оккам (William Occam) – философ-схоласт XIV в., утверждавший, что понятия, не сводимые к интуитивному и опытному знанию, должны изгоняться из науки (принцип «бритвы Оккама»).), поскольку они постулируют существование других вселенных, которые мы никогда не увидим. Зачем природе быть столь расточительной и «развлекаться» созданием бесконечного числа различных миров? Однако этот аргумент можно обратить в пользу существования сверхвселенной. В чем именно расточительна природа? Разумеется, не в пространстве, массе или количестве атомов: их бесконечно много уже содержится на уровне I, существование которого не вызывает сомнений, так что нет смысла беспокоиться, что природа потратит их еще сколькото. Реальный вопрос состоит в кажущемся уменьшении простоты. Скептиков беспокоит дополнительная информация, необходимая для описания невидимых миров.

Однако весь ансамбль часто бывает проще каждого из своих членов. Информационный объем алгоритма числа есть, грубо говоря, выраженная в битах длина самой короткой компьютерной программы, генерирующей это число. Возьмем для примера множество всех целых чисел. Что проще – все множество или отдельное число? На первый взгляд – второе. Однако первое можно построить с помощью очень простой программы, а отдельное число может быть чрезвычайно длинным. Поэтому все множество оказывается проще.

Аналогично, множество всех решений уравнений Эйнштейна для поля проще каждого конкретного решения – первое состоит всего из нескольких уравнений, а второе требует задания огромного количества начальных данных на некой гиперповерхности. Итак, сложность возрастает, когда мы сосредоточиваем внимание на отдельном элементе ансамбля, теряя симметрию и простоту, свойственные совокупности всех элементов.

В этом смысле сверхвселенные более высоких уровней проще. Переход от нашей Вселенной к сверхвселенной уровня I исключает необходимость задавать начальные условия. Дальнейший переход к уровню II устраняет необходимость задавать физические константы, а на уровне IV вообще ничего задавать не нужно. Чрезмерная сложность – это лишь субъективное восприятие, точка зрения лягушки. А с позиции птицы, эта сверхвселенная едва ли может быть еще проще.

Жалобы на непостижимость имеют эстетическую, а не научную природу и оправданы лишь при аристотелевском мировосприятии. Когда мы задаем вопрос о природе реальности, не следует ли нам ожидать ответа, который может показаться странным?

Общее свойство всех четырех уровней сверхвселенной состоит в том, что простейшая и, повидимому, самая изящная теория по умолчанию включает в себя параллельные вселенные. Чтобы отвергнуть их существование, нужно усложнить теорию, добавив не подтверждаемые экспериментом процессы и придуманные для этого постулаты – о конечности пространства, коллапсе волновой функции и онтологической асимметрии. Наш выбор сводится к тому, что считать более расточительным и неизящным – множество слов или множество вселенных. Возможно, со временем мы привыкнем к причудам нашего космоса и сочтем его странность очаровательной.

Макс Тегмарк(«В мире науки», №8, 2003)

"...Команда ученых в Оксфорде сделали открытие в области математики. Параллельные миры действительно существуют.
Сама теория таких миров появилась еще в 1950 в США (автор - Хью Эверетт) и объяснила тайны квантовой механики, вызывавшие споры ученых. В Эвереттовской «многомирной» Вселенной каждое новое событие возможно, вызывая разделение Вселенной. Число возможных альтернативных исходов равно числу миров.

К примеру, водитель машины видит выскочившего на дорогу пешехода. В одной реальности он, избегая наезда, гибнет сам, в другой попадает в больницу и остается живым, в третьей гибнет пешеход. Число альтернативных сценариев бесконечно.

Теория была признана фантастической и забыта. Но неожиданно в Оксфорде в ходе математического исследования обнаружили, что Эверетт был на верном пути.

Главный вывод из открытия состоит в следующем. Кустоподобные ветвящиеся структуры, возникающие при расщеплении Вселенной на параллельные версии ее самой, объясняют вероятностный характер результатов в квантовой механике. То есть неизбежно мы живем лишь в одном из множества параллельных миров, а не в единственном".

После прочтения этой статьи мне захотелось найти официальные научные положения относительно данной темы.
Вот, что получилось.

***
В 1954 году молодой кандидат наук из Университета Пристон, Хью Эверетт , выдвинул совершенно изумительное предположение о том, что в Галактике существуют параллельные миры, идентичные нашей Вселенной . Согласно его точке зрения, все эти вселенные связаны с нашей вселенной, но в то же время, все они отклоняются от нашей вселенной, а наша вселенная в свою очередь отклоняется от всех других. Вероятно, в других вселенных тоже происходили свои войны, которые, возможно, носили несколько иной характер, чем те, которые происходили на нашей планете. Некоторые виды живых организмов, погибших в нашей вселенной, могли эволюционировать и приспособиться к другим условиям в другой вселенной. Возможно, что в других галактиках совсем нет людей, ведь в тех условиях люди могли просто не выжить.

Выдвинув теорию о существование нескольких миров, Эверетт пытался дать ответ на давно волнующий всех вопрос, относящийся к квантовой физике: "Почему количество вещества ведет себя непостоянно и беспорядочно?"
квантовой физики началось в 1900 году, когда физик Макс Планк предложил выделить еще один раздел в области физики и назвать его квантовой физикой . Во время одного из своих опытов Планк обнаружил странное поведение излучения, что полностью противоречило классическим законам физики. Во-первых, частицы на микроуровне могут произвольно менять различные формы. Например, ученые наблюдали за фотонами (светом). Даже один-единственный фотон проявляет свою способность принимать разные формы. Это можно представить в виде того, как если бы Вы были обычным цельным человеком и вдруг могли принять газообразную форму.

Такое явление стали называть принципом неопределённости Гейзенберга . Физик Вернер Гейзенберг утверждал, что просто наблюдая за квантовым веществом, мы уже можем повлиять на поведение этого вещества. Поэтому мы никогда не будем знать наверняка истинную природу квантового объекта или его свойства, такие как и скорость и местоположение. Эту точку зрения поддержали ученые из Копенгагенского института квантовой механики. Согласно определению датского физика Нильса Бора , "все квантовые частицы не могут существовать в одном или другом состоянии, они существуют во всех возможных состояниях сразу. Общее количество возможных состояний квантового объекта называется его волновой функцией. Состояние объекта одновременно во всех его возможных состояниях называется суперпозицией (наложением)".

Согласно Бору, когда мы наблюдаем за квантовым объектом, мы как бы влияем на его поведение. Наблюдение нарушает суперпозицию объекта и обычно вынуждает объект принять одно из своих состояний в волновой функции. Эта теория объясняет, почему у физиков получились разные данные одного и того же квантового объекта: каждый раз объект "выбирал" различные состояния.

Теория о множестве миров
Хью Эверетт согласился с большинством утверждений, сделанных Нильсом Бором о квантовом мире. Он полностью поддерживает теорию о суперпозиции и согласен с понятием волновой функции. Но Эверетт не согласен с Бором только в одном, но весьма важном вопросе: Эверетт считает, что принимать то или иное состояние квантового объекта заставляют не измерения. Наоборот, измерение взятого квантового объекта вызывает некий раскол во Вселенной. Вселенная буквально дублирована, в результате измерения она раскалывается на вселенные для каждого возможного результата. Например, предположим, что волновая функция объекта является и частицей и волной. Когда физик измеряет частицу, существует два возможных исхода: данная частица может быть измерена как частица или как волна.

Когда физик исследует объект, он может заметить, как вселенная делится на две отличные вселенные, в результате чего и существует два разных исхода опыта. Поэтому получается, что ученый в одной вселенной исследовал объект в форме волны. Тогда как этот же самый ученый но в другой вселенной измерил объект в качестве частицы.

Если действие имеет больше чем один возможный результат, и если теория Эверетта действительна, то получается, что Вселенная раскалывается, когда предпринимается какое-то действие для ее раскола. Это означает, что, если Вы когда-либо оказывались в смертельно опасной для вас ситуации, когда ваша жизнь была буквальна «на волоске», то по законам параллельной для нас вселенной, Вы мертвы. Это одна из причин, почему многие считают эту теорию неправдоподобной.

Еще одним тревожащим аспектом интерпретации теории о многих мирах является то, что она полностью меняет наше представление о времени как о линейном понятии.

Но человек не может знать о другом себе, или даже о смерти самого себя, существующего в параллельном мире. Тогда как нам проверить подлинность теории о существовании параллельных миров? Теоретическое подтверждение возможности данной теории появилось в конце 1990-х годов, когда ученые провели воображаемый эксперимент, названный «квантовым самоубийством». Этот эксперимент вновь привлек внимание к теории Эверетта, которую много лет считали нелепостью. После того, как теория о нескольких мирах была признана возможной, физики и математики стремились как можно глубже проникнуть в ее смысл и развить ее. Поэтому теория о существовании нескольких миров - не единственная теория, пытающаяся объяснить вселенную. Другие ученые тоже заявляли о вероятности существования параллельных вселенных.

Параллельные миры.
После создания теории относительности, Альберт Эйнштейн всю свою оставшуюся часть жизни пытался найти один универсальный ответ на все вопросы. Физики называют эту теорию «Теорией Всего» . Квантовые физики полагают, что они находятся как раз на пути такой конечной теории. Другие же физики считают это бессмысленной тратой времени, поскольку еще малоизвестная отрасль науки вряд ли может решить такую сложную задачу. Тогда они обратились к подквантовому уровню и назвали свою теорию "Теорией струн". Но самое интересное, что все научные исследования подтверждали факт существования параллельных миров.

Теория струн была предложена японско-американским физиком Мичайо Каку . Его теория говорит о том, что все фундаментальные компоненты любого вещества, равно как и все силы, действующие во вселенной, например гравитация, существуют на подквантовом уровне. Эти компоненты напоминают крошечные резиновые ленты или струны, из которых состоят кварки (квантовые частицы), и в свою очередь электроны, атомы, клетки и т.д. То, какое вещество получается из этих струн и как ведет себя вещество, зависит от вибрации этих струн. Именно из таких вот небольших струн и вот таки образом создана вся наша вселенная.

Подобно теории "Многих миров", Теория струн также пытается доказать существование параллельных вселенных. Согласно этой теории, наша собственная вселенная представляет собой нечто вроде пузыря, который существует рядом с подобными параллельными вселенными. В отличие от теории "многих миров",Теория струн предполагает, что эти вселенные могут входить в контакт друг с другом. Но согласно теории струн, между этими параллельными вселенными может существовать гравитационное поле. И поэтому, если вселенные вступят в контакт, то может произойти "Большой взрыв", подобно тому, который вероятно и создал нашу вселенную.

***
Несколько десятилетий назад в советской научной литературе принято было утверждать, что Вселенная бесконечна в пространстве и времени. Студенты философских факультетов принимали это утверждение на веру точно так же, как студенты-богословы на веру принимали противоположное утверждение о том, что мир ограничен и был создан Богом в не таком уж от нас отдаленном прошлом. Бесконечность Вселенной представлялась многим (в том числе и космологам) неисчислимым скоплением галактик, звезд, планет, туманностей, электромагнитного и других видов излучений, а также разного другого космического мусора.

После того, как российский математик Фридман, а затем бельгийский богослов и физик Леметр создали концепцию расширяющейся Вселенной, и концепция эта стала частью научного мировоззрения, проблема бесконечности мироздания перешла на иной - не философский, а физический - уровень изучения. Определяющим критерием стала плотность материи (вещества и всех видов полей) в возникшей миллиарды лет назад Вселенной - если плотность эта достаточно велика (конкретное число не имеет значения, важна постановка вопроса в принципе), то силы гравитации во Вселенной таковы, что способны не только замедлить продолжающееся расширение, не только затем остановить его, но и впоследствии сжать Вселенную, собрать материю вновь в ту самую точку-сингулярность, где она пребывала в странном неизученном состоянии миллиарды лет назад. А потом...

Потом, вероятно, вновь произошел бы такой же Большой взрыв - и Вселенная повторила бы с какими-то вариациями многомиллиарднолетний путь своего развития. Каждый цикл во времени конечен, но число таких циклов должно быть бесконечным в материальной картине мира, причем все бесконечно рождающиеся и умирающие Вселенные отличаются друг от друга лишь в том случае, если в момент Большого взрыва формируются различные по характеру законы природы и мировые постоянные. В одной Вселенной скорость света может оказаться равной миллиону километров в секунду, в следующей - пяти километрам в час и так далее; понятно, что условия существования и развития материи в таких Вселенных будут принципиально отличаться друг от друга, что никак, однако, не скажется на нашем главном допущении - все последовательные Вселенные, конечные в пространстве-времени, являются звеньями единой бесконечной во времени цепи мирозданий.

Бесконечное число циклов развития материи уже миновало и бесконечное число циклов еще предстоит в так называемой «закрытой» модели Вселенной. Антропный принцип утверждает, что законы природы в момент Большого взрыва сформировались таким образом, чтобы в нашей Вселенной было возможно зарождение человеческого разума. Ведь достаточно малейшего отклонения физических постоянных (постоянной Планка, например, или постоянной тонкой структуры) от известных ныне значений, и в такой Вселенной невозможным становится появление не только человека, но вообще чего бы то ни было, состоящего из органических веществ.

В закрытой модели Вселенной антропный принцип, вообще говоря, парадоксом не является - да, наше мироздание именно таково, но это не значит, что нам просто дико повезло, и Вселенная оказалась такой, какая нам нужна: ведь в бесконечной череде предшествовавших миров человечество не появлялось и развитие происходило без наблюдателей/

Получается, что мироздание может быть бесконечным либо в пространстве, либо во времени - но не во всех четырех координатах сразу. Действительно, если плотность материи (включая, естественно, невидимую, «темную») недостаточна и Вселенной предстоит бесконечно расширяться в пространстве, то во времени она имела начало - момент Большого взрыва, единственный и неповторимый. Ось времени в таком случае ограничена с одного конца и, значит, не бесконечна.

Если Вселенная ограничена в пространстве, то она испытывает бесконечное число циклов расширений-сжатий, и следовательно, не имеет ни начала, ни конца на оси времени. На первый взгляд в рассуждеиях о Вселенной нет формальных изъянов, но, тем не менее, имеются ошибочные предположения.

***
Почему?
А почему, рассуждая о Вселенной, мы предполагаем, что это явление природы присутствует в единственном числе? Почему, рассуждая о Большом взрыве, мы предполагаем, что результатом этого физического процесса стало рождение одной-единственной Вселенной, а не бесконечно большого их количества? Почему, рассуждая об эволюции Вселенной, мы молчаливо предполагаем, что развитие происходит в одном-единственном направлении, а не в бесконечно большом количестве независимых друг от друга направлений, порождающих, соответственно, бесконечно большое число мирозданий?

В настоящее время в космологии популярна инфляционная теория Большого взрыва . Идею предложил Алан Гут 20 лет назад, и, согласно этой идее, в первые микросекунды после Большого взрыва мироздание было похоже на стремительно раздувающийся мыльный пузырь, но не один, а, как это часто бывает с мыльными пузырями, состоящий из множества (в принципе - бесконечного числа) мелких пузырей, причем каждый пузырек расширялся по-своему, поскольку в каждом были чуть (или не чуть) иные плотности, температуры, давления. И физические законы тоже чуть (или не чуть) отличались. В результате возникла и та Вселенная, в которой мы живем - одна из множества (в принципе - бесконечного числа) вселенных, образовавшихся тогда.

Все эти вселенные отделены друг от друга «линиями горизонта», а потому и не наблюдаемы, но, в принципе, возможно перекрытие пузырей, и проникновение материальных носителей из одной вселенной в другую, и соответственно, возможны природные катастрофы, связанные с тем, что в одной вселенной начинают действовать физические законы, возникшие в другой вселенной.

* * *

Мироздание, состоящее из бесконечного числа вселенных, долгое время оставалось вне рассмотрения физической науки.

В результате развития инфляционной космологической модели Вселенная, в которой мы живем, начала представляться ничем не выделенной единицей в бесконечном числе вселенных, возникших в результате Большого взрыва. По-английски Вселенная - "Universe", и потому логично было назвать мироздание, состоящее из бесконечного числа вселенных, словом "Multiverse". В научный обиход этот термин ввел 20 лет назад физик Дэвид Дойч, специалист по квантовой физике, один из создателей идеи квантовых компьютеров.

* * *

Идея Мультиверсума пришла в физику относительно недавно. Для того, чтобы теоретики отнеслись к ней вполне серьезно, понадобилось 40 лет. Основу для будущих работ в области Мультиверсума заложил в 1956 году американский физик
Хью Эверетт , защитивший докторскую диссертацию на весьма, вроде бы, специфическую тему о ветвлении волновых функций. Хью Эверетт произвел в физике революцию, заявив о том, что "свободы воли и права выбора у элементарной частицы действительно нет, а это означает, что в каждый момент времени совершаются не одно, а два или больше действий, допускаемых решениями волновых уравнений, и мироздание расщепляется на две или больше новых составляющих".


Иными словами: если в каком-то физическом процессе возможны не один, а два или несколько вариантов развития, то осуществляются в реальности все варианты без исключения. Но мы-то наблюдаем какой-то один вариант! Это действительно так, просто другие варианты осуществляются в другой вселенной. Каждый момент времени наша Вселенная расщепляется, а поскольку событий каждое мгновение происходит великое (в принципе - бесконечное) множество, то и расщепляется наш мир на великое (бесконечное) множество почти неотличимых копий, каждая из которых развивается своим собственным путем. И потому на самом деле существует не одна Вселенная - та, что представлена нашему взору и сознанию, - а великое множество вселенных.

В статье "Разветвленное древо времени" речь шла лишь об одном, хотя и очень важном, следствииэвереттизма - возможности существования многочисленных "параллельных" вселенных, возникших в результате ветвления нашей Вселенной, и о том, что в этих эвереттовских вселенных оказываются выполнены все предсказания всех наших пророков, а также осуществлены все события, которые в нашем мире не произошли.

Работы Эверетта с трудом пробивали дорогу в «ортодоксальной» физике даже несмотря на то, что признаны были такими корифеями физической науки, как Джон Уилер, сам создавший в физике немало парадоксальных гипотез. Идея Мультиверсума, развиваемая сейчас в работах Дэвида Дойча и его последователей, является следствием идей Эверетта - следствием идеи бесконечного ветвления физического мироздания.

* * *

Действительно, поскольку ветвление началось не сто лет назад и даже не миллиард, а существовало столько же времени, сколько существует Вселенная, то на самой ранней стадии ее развития или даже в момент Большого взрыва, когда лишь формировались законы нашего мира, происходили ветвления, при которых возникали другие физические законы и развивались, соответственно, принципиально другие вселенные. В них-то наверняка сейчас осуществляется то, что противоречит нашим законам природы.

Идея Мультиверса, идея существования бесконечного числа вселенных, где реализуется бесконечное число выборов и совершенно для нас непредставимых физических законов, заставляет по-новому взглянуть не только на наш обыденный мир, заполненный звездами, галактиками, газом, пылью и людьми, рассуждающими о природе. По-новому, в принципе, должна быть представлена и идея высшей созидающей силы - идея всемогущего и всеведущего Бога-Творца .

* * *
Пользуясь эвереттовским принципом ветвления, можно объяснить любое явление, произошедшее в нашей исторической реальности. В нашей Вселенной гитлеровцы уничтожили 6 миллионов евреев Европы. Но существует бесконечное множество вселенных, ответвившихся от нашей, где остались жить 3 миллиона невинных, и где погибло не больше миллиона, и где не погиб никто, потому что задолго до роковых тридцатых годов кто-то осуществил для себя иной выбор, и Гитлер не родился, или Гитлер родился в другой Австрии, с иным историческим прошлым...

Каждое ветвление не является чем-то ограниченным (скажем, выбрал я чай вместо кофе, и возник некий замкнутый участок Вселенной, в котором сижу я и пью чай, в то время, как в другом участке Вселенной я подношу ко рту чашечку кофе) - нет, всякое ветвление, самое незначительное, порождает весь бесконечный мир.


Однако в каждый момент ветвления возникает другая вселенная, полностью идентичная нашей, кроме одного-единственного события, породившего разделение мироздания...И если справедливы предположения Эверетта и умозаключения его последователей, то эта другая вселенная возникает сразу и именно в таком виде, в каком существовала наша Вселенная в момент ветвления.

* * *
И еще. Если мы действительно живем в мире ветвлений, в мире Мультиверса, то не существует - в принципе! - фантастической литературы. Вся литература, как и все искусство (включая абстрактное) есть сугубый и беспощадный реализм, поскольку в одной (или бесконечном числе) эвереттовских ветвлений все описанное, придуманное, нарисованное, показанное и т.д., конечно, существовало, существует или будет существовать. Включая и те идеи и сюжеты фантастики, которые явно нарушают известные нам законы природы (волшебство, магия и пр.), ибо во всех этих бесконечностях существуют и миры (для нас - "вещи в себе"), в которых действуют любые другие законы природы, в том числе миры, созданные иудейским Богом, и миры Будды, и миры Валгаллы, и миры, не созданные никем...

Одна из проблем описательного эвереттизма в том, что разум человеческий не очень-то приспособлен для оперирования бесконечностями. Скажи кому-нибудь (включая, по большей части, известных физиков и философов) что-нибудь о бесконечном, и человек представляет себе единственную бесконечность, причем часто в однозначном (по Энгельсу) ее проявлении - как бесконечное повторение чего-то. Бесконечное разнообразие бесконечностей не рассматривается, потому что не представимо. Или потому, что выходит за рамки нынешних представлений.

В конце концов эвереттизм приведет к возникновению новой науки - чего-нибудь вроде инфинитологии , науки о бесконечностях, но не математических, а физических

Мультивселенная – научная концепция предполагающая наличие множества параллельных вселенных. Существует ряд гипотез, описывающих многообразие этих миров, их свойства и взаимодействия.

Успех квантовой теории неоспорим. Ведь она вместе с представляет все фундаментальные законы физики, известные современному миру. Несмотря на это квантовая теория все же ставит ряд вопросов, на которые до сих пор нет определенных ответов. Одним из них является известная «проблема кота Шредингера», которая наглядно демонстрирует зыбкий фундамент квантовой теории, что формируется на предсказаниях и вероятности того или иного события. Речь идет о том, что особенностью частицы, согласно квантовой теории, является существование ее в состоянии равном сумме всех ее возможных состояний. В таком случае если применить данный закон к квантовому миру, то окажется что кот – это сумма состояния живого и мертвого кота!

И хотя законы квантовой теории успешно используются при применении таких технологий как радары, радио, мобильные телефоны и интернет, приходится мириться с указанным выше парадоксом.

В попытке разрешить квантовую проблему была сформирована так называемая «копенгагенская теория», согласно которой состояние кота становится определенным, когда мы открываем коробку и наблюдаем его состояние, а до того оно неопределенное. Однако, применение копенгагенской теории, допустим, к , означает, что Плутон существует лишь с того момента как его открыл американский астроном Клайд Томбо 18 февраля 1930-го года. Только в этот день зафиксировалась волновая функция (состояние) Плутона, а остальные все схлопнулись. Но известно, что возраст Плутона значительно превышает отметку в 3,5 млрд лет, что указывает на проблемы копенгагенской интерпретации.

Множественность миров

Другой вариант решения квантовой проблемы предложил американский физик Хью Эверетт в 1957-м году. Он сформулировал так называемую «многомировую интерпретацию квантовых миров». Согласно ей каждый раз, когда объект переходит из неопределенного состояния в определенное – происходит расщепление этого объекта на количество вероятных состояний. Приводя в пример кота Шредингера, когда мы открываем коробку, появляется вселенная со сценарием, где кот мертв и появляется вселенная, где он остается жив. Таким образом, он находится в двух состояниях, но уже в параллельных мирах, то есть все волновые функции кота остаются действительными и никакая из них не схлопывается.

Именно эту гипотезу множество писателей фантастов использовали в своих научно-фантастических произведениях. Множественность параллельных миров предполагает наличие ряда альтернативных событий, из-за которых история приняла иной ход. К примеру, в каком-то мире непобедимая испанская армада не была разгромлена или Третий рейх победил во Второй мировой войне.

Более современная интерпретация этой модели объясняет невозможность взаимодействия с другими мирами отсутствием когерентности волновых функций. Грубо говоря, в какой-то момент волновая функция нашей перестала колебаться в такт с функциями параллельных миров. Тогда вполне возможно, что мы можем сосуществовать в квартире с «сожителями» из иных вселенных, не взаимодействуя с ними никоим образом, и, равно как и они, быть убежденными в том, что именно наша Вселенная настоящая.

На самом деле термин «многомировая» — не совсем подходящей для данной теории, так как она предполагает один мир с множеством вариантов событий, происходящих одновременно.

Большинство физиков-теоретиков согласны с тем, что данная гипотеза невероятно фантастическая, однако она объясняет проблемы квантовой теории. Впрочем, ряд ученых не считают многомировую интерпретацию научной, так как она не может быть подтверждена или опровержима при помощи научного метода.

В квантовой космологии

Сегодня гипотеза о множественности миров вновь возвращается на научную сцену, так как ученые намерены использовать квантовую теорию не для каких-либо объектов, а применить по отношению ко всей Вселенной. Речь идет о так называемой «квантовой космологии», которая, как может показаться с первого взгляда, несет абсурд даже в своей формулировке. Вопросы данной научной области связаны с Вселенной. Мизерные же размеры Вселенной на первых этапах ее формирования вполне согласуются с масштабами квантовой теории.

В таком случае, если размеры Вселенной были порядка , то применив к ней квантовую теорию, мы также можем получить неопределенное состояние Вселенной. Последнее подразумевает наличие других вселенных, находящихся в различных состояниях с разной вероятностью. Тогда состояния всех параллельных миров в сумме дают одну единственную «волновую функцию Вселенной». В отличие от многомировой интерпретации квантовые вселенные существуют раздельно.

.

Как известно, существует проблема тонкой настройки Вселенной, которая обращает внимание на то, что физические фундаментальные константы, задающие основные законы природы в мире, подобраны идеально для существования жизни. Будь масса протона немного меньше, формирование элементов тяжелее водорода было бы невозможным. Это проблема может быть решена при помощи модели мультивселенной, в которой реализуется множество параллельных вселенных с различными фундаментальными . Тогда вероятность существования некоторых из этих миров мала и они «умирают» вскоре после зарождения, например, сжимаются или разлетаются. Другие же, константы которых формируют не противоречивые законы физики, с большой вероятностью остаются стабильными. Согласно этой гипотезе, мультивселенная включает большое количество параллельных миров, большинство из которых являются «мертвыми», и лишь небольшое число параллельных вселенных позволяет им существовать длительное время, и даже дает право на наличие разумной жизни.

В теории струн

Одной из наиболее перспективных областей теоретической физики является . Она занимается описанием квантовых струн – протяженных одномерных объектов, колебание которых представляется нам в виде частиц. Первоначальное призвание данной теории состоит в том, чтобы объединить две фундаментальные теории: общую теорию относительности и квантовую теорию. Как оказалось позже, сделать это можно несколькими способами, в результате чего образовалось несколько теорий струн. В середине 1990-х годов ряд физиков-теоретиков обнаружили, что эти теории являются различными случаями одной конструкции, позже названой как «М-теория».

Ее особенность заключается в существовании некой 11-мерной мембраны, струны которой пронизывают нашу Вселенную. Однако мы живем в мире с четырьмя измерениями (три координаты пространства и одна временная), куда же деваются другие измерения? Ученые предполагают, что они замыкаются сами на себе в самых маленьких масштабах, которые пока не удается пронаблюдать, в силу недостаточного развития технологий. Из этого утверждения вытекает иная сугубо математическая проблема – возникает большое число «ложных вакуумов».

Простейшее объяснение этой свертки ненаблюдаемых нами пространств, а также наличие ложных вакуумов – мультивселенная. Физики, занимающиеся теорий струн, опираются на утверждение о том, что существует огромное число других вселенных, в которых не только другие физические законы, но также и иное количество измерений. Таким образом, мембрану нашей Вселенной в упрощенном виде можно представить как сферу, пузырь, на поверхности которого обитаем мы, и 7 измерений которого находятся в «свернутом» состоянии. Тогда наш мир вместе с другими вселенными-мембранами – что-то вроде множества мыльных пузырей, что плавают в 11-мерном гиперпространстве. Мы же, существуя в 3-хмерном пространстве, и не можем выбраться за его пределы, а потому и не имеем возможности взаимодействовать с иными вселенными.

Как уже упоминалось ранее, большинство параллельных миров, вселенных – мертвы. То есть в силу нестабильных или непригодных для жизни физических законов их вещество может быть представлено, например, лишь в виде бесструктурного скопления электронов и . Причиной тому разнообразие возможных квантовых состояний частиц, иные значения фундаментальных констант и другое количество измерений. Примечательно, что такое предположение не противоречит принципу Коперника, утверждающего, что наш мир не уникален. Так как хоть и в малом количестве, но могут существовать миры, физические законы которых, несмотря на свое отличие от наших, все же допускают формирование сложных структур и зарождение разумной жизни.

Состоятельность теории

Хотя гипотеза о мультивселенной и выглядит как сценарий для научно-фантастической книги, она имеет лишь один недостаток – ученым не представляется возможным доказать или опровергнуть ее при помощи научного метода. Но за ней стоит сложная математика и на нее опирается ряд значимых и перспективных физических теорий. Аргументы в пользу мультивселенной представлены следующим списком:

  • Является фундаментом для существования многомировой интерпретации квантовой механики. Одной из двух передовых теорий (наряду с копенгагенской интерпретацией), решающих проблему неопределенности в квантовой механике.
  • Объясняет причины существования тонкой настройки Вселенной. В случае с мультивселенной, параметры нашего мира – лишь один из множества возможных вариантов.
  • Является так называемым «ландшафтом теории струн», так как решает проблему ложных вакуумов и позволяет описать причину, по которой определенное количество измерений нашей Вселенной сворачиваются.

  • Поддерживается , которая наилучшим образом объясняет ее расширение. На ранних этапах формирования Вселенной, вероятнее всего она могла быть разделена на две вселенные и более, каждая из которых эволюционировала независимо от другой. На теории инфляции строится современная стандартная космологическая модель Вселенной — Лямбда-CDM.

Шведский космолог Макс Тегмарк предложил классификацию различных альтернативных миров:

  1. Вселенные, находящиеся за пределами нашей видимой Вселенной.
  2. Вселенные с иными фундаментальными константами и числами измерений, которые, к примеру, могут располагаться на других мембранах, согласно М-теории.
  3. Параллельные вселенные, возникающие согласно многомировой интерпретации квантовой механики.
  4. Конечный ансамбль – все возможные вселенные.

О дальнейшей судьбе теории о мультивселенной пока нечего сказать, но на сегодня она занимает почетное место в космологии и теоретической физике, и поддерживается рядом выдающихся физиков современности: Стивен Хокинг, Брайан Грин, Макс Тегмарк, Митио Каку, Алан Гут, Нил Тайсон и другие.

Может оказаться, что наша Вселенная не единственная.

Возможно, такая концепция и кажется удивительной, но за ней стоит физика. И есть не один способ, позволяющий убедиться в этом, — множество независимых физических теорий делают подобный вывод. В действительности, по мнению некоторых экспертов, скрытые вселенные скорее существуют, нежели нет. Есть пять самых правдоподобных научных теорий, которые предполагают, что мы существуем в Мега-Вселенной.

Теория о математических Вселенных

Ученые ведут споры: является ли математика просто полезным инструментом, описывающим Вселенную, или она сама — фундаментальная реальность, а наши наблюдения – это всего лишь несовершенные представления о математическом характере Вселенной. Если данное утверждение истинно, то, вполне возможно, могут существовать математические инварианты для нашей Вселенной.

В данных структурных инвариантах работают законы математической логики, которые порой сильно отличаются от логики привычной для нас модели Мира.

Данная идея была предложена Максом Тегмарком из Массачусетского технологического института, который считает, что математическую структуру можно описать неким образом, находящимся в полной зависимости от человеческого багажа знаний. Причем, эта вселенная существует независимо, и будет существовать, даже если людей вообще не будет.

Другими словами, данные инварианты никоим образом не зависят от существования человечества, пытающегося их осознать.

Теория о дочерних Вселенных

Еще одну возможность существования множественных Вселенных описывает теория квантовой механики, царящая в мире субатомных частиц. В этой сфере мир описывается терминами вероятностей, а определенных результатов. Математика данной теории выдвигает предположение, что все возможные результаты имеют место в своих собственных отдельных Вселенных.

К примеру, на перекрестке, где можно пойти направо или налево, в реальной Вселенной рождается две дочерних Вселенных. Одна из них та, в которой вы повернули налево, а другая, в которой сделали поворот направо, причем, их невозможно отличить.

Теория о параллельных Вселенных

Еще одна идея берет свое начало в теории струн – это параллельные Вселенные, парящие вне досягаемости от нашей собственной Вселенной. Данная идея берет свое начало в теории существования большего количества измерений, нежели есть в нашем мире. Дополнением к нашей трехмерной реальности пространства становятся другие трехмерные реальности, которые могут находиться в многомерном пространстве.

По словам физика Брайана Грина из Колумбийского университета, наша Вселенная является одним «блоком» из большого количества «блоков», которые находятся в многомерном пространстве.

Есть предположение, что эти параллельные вселенные в действительности не всегда параллельны и не всегда находятся вне досягаемости. Иногда они сталкиваются друг с другом, создавая Большие Взрывы, порождающие все новые и новые Вселенные.

Теория о пузырьковых Вселенных

В научном мире существуют и другие теории существования Вселенных, в числе которых теория хаотической инфляции.

Предполагается, что после Большого Взрыва наша Вселенная начала расширяться, словно надуваемый воздушный шарик. Некоторая ее часть оформилась в виде «пузыря» нашей Вселенной, создав возможность формирования звезд.

Но в других районах пространства-времени происходили другие процессы, в результате которых началось формирование изолированных Вселенных, которые представляют собой отдельные «пузырьки», аналогичные выдуваемым мыльным пузырям. Они могут находиться на разных ступенях развития, обладая собственными физическими законами и константами.

Данную концепцию предложил космолог Александр Виленкин, который в настоящее время работает в университете Тафтса.

Теория о бесконечных Вселенных

По мнению ученых, наиболее вероятной является плоская форма пространства-времени, в отличие от тороидальной или сферической.

Но если пространство-время является бесконечным и течет вечно, то в какой-то из моментов оно начнет повторяться, так как возможно конечное число способов расположения частиц в пространстве и времени.

Поэтому, если продвинуться достаточно далеко, то можно наткнуться на другую нашу версию, а на самом деле, их может быть бесконечное множества. Некоторые близнецы будут повторять ваши действия, а другие – наденут разную одежду с утра, и у них могут быть совершенно другие карьеры и образы жизни.

Так как расширение наблюдаемой Вселенной происходит только в 13.7 миллиардов лет после Большого Взрыва, а это эквивалентно размеру в 13.7 миллиардов световых лет, можно считать, что пространство-время за той границей является самостоятельной отдельной Вселенной. Получается, что множество разных Вселенных находятся рядом, образуя огромное лоскутное одеяло из Вселенных.

No related links found



Вера в существование незримых соседей граничит с фантастикой. Или с больным воображением. Так говорят скептики. А сторонники стоят на своем и приводят целых 10 аргументов в пользу альтернативной реальности.


1. Многомировая интерпретация

Вопрос об уникальности всего сущего волновал великие умы задолго до авторов фантастических романов. Над ним размышляли древнегреческие философы Демокрит, Эпикур и Метродор Хиосский. Об альтернативных вселенных говорится и в священных текстах индуистов.


Для официальной науки эта мысль родилась только в 1957 году. Американский физик Хью Эверетт создал теорию множественных миров, призванную заполнить пробелы в квантовой механике. В частности, выяснить, почему кванты света ведут себя то как частицы, то как волны.


По Эверетту, каждое событие приводит к расколу и копированию Вселенной. При этом количество «клонов» всегда равно числу возможных исходов. А сумму центрального и новых мирозданий можно изобразить в виде ветвистого дерева.

2. Артефакты неизвестных цивилизаций


Некоторые находки вгоняют в ступор даже самых опытных археологов.


Например, обнаруженный в Лондоне молоток, датированный 500-миллионным годом до нашей эры, то есть периодом, когда на Земле не было даже намека на Homosapiens!


Или вычислительный механизм, позволяющий определять траекторию движения звезд и планет. Бронзовый аналог компьютера был выловлен в 1901 году неподалеку от греческого острова Антикитера. Исследование прибора началось в 1959 году и продолжается до сих пор. В 2000-х удалось вычислить примерный возраст артефакта - I век до н.э.


Пока ничто не указывает на подделку. Остаются три версии: компьютер изобрели представители неведомой древней цивилизации, потеряли путешественники во времени или… подкинули выходцы из иных миров.

3. Жертва телепортации


Загадочная история испанки Лерин Гарсиа началась обычным июльским утром, когда она проснулась в чужой реальности. Но не сразу поняла, что произошло. На дворе по-прежнему стоял 2008 год, Лерин был 41 год, она находилась в тех же городе и доме, где легла спать.


Только вот пижама и постельное белье за ночь кардинально сменили цвет, а шкаф сбежал в другую комнату. На месте не оказалось офиса, где Лерин проработала 20 лет. Вскоре «дома» материализовался бывший жених, отправленный в отставку полгода назад. Куда делся нынешний друг сердца, не смог выяснить даже частный детектив…


Тесты на алкоголь и наркотики дали отрицательный результат. Как и консультация психиатра. Врач объяснил случившееся пережитым стрессом. Диагноз не удовлетворил Лерин и подтолкнул к поиску информации о параллельных мирах. Она так и не смогла вернуться в родное измерение.

4. Дежавю наоборот


Суть дежавю не сводится к знакомому многим смутному ощущению «повтора» и бытовому предвидению. У этого феномена есть антипод – жамевю. Испытавшие его люди неожиданно перестают узнавать привычные места, старых друзей и кадры из просмотренных фильмов. Регулярные жамевю свидетельствуют о психических нарушениях. А единичные и редкие сбои в памяти бывают и у здоровых людей.
Яркой иллюстрацией служит эксперимент английского нейропсихолога Криса Мулена. 92 добровольца должны были успеть за минуту 30 раз написать слово «двери». В итоге 68% испытуемых всерьез усомнились в существовании слова. Сбой в мышлении или мгновенные скачки из реальности в реальность?

5. Корни сновидений


Несмотря на обилие исследовательских методик, причина появления сновидений и поныне остается загадкой. Согласно общепринятому взгляду на сон, мозг всего-навсего обрабатывает накопленную наяву информацию. И переводит ее в картинки – наиболее удобный для спящего разума формат. Разгадка номер два – нервная система посылает уснувшему хаотичные сигналы. Они-то и преобразуются в красочные видения.


По Фрейду, во сне мы получаем доступ к подсознанию. Освобожденное от цензуры сознания, оно спешит поведать нам о вытесненных сексуальных желаниях. Четвертую точку зрения первым высказал Карл Юнг. Увиденное во сне – не фантазия, а специфическое продолжение полноценной жизни. В приснившихся образах Юнг тоже видел шифр. Но не от подавленного либидо, а от коллективного бессознательного.
В середине прошлого века психологи заговорили о возможности управления сном. Появились соответствующие пособия. Самой известной стала трехтомная инструкция американского психофизиолога Стивена Лабержа.

6. Заблудившийся между двух Европ


В 1952 году в токийском аэропорту появился странный пассажир. Судя по визам и таможенным штампам в паспорте, за последние 5 лет он многократно летал в Японию. Но в графе «Страна» значился некий Тауред. Владелец документа уверял, что его родина – европейское государство с тысячелетней историей. «Пришелец» предъявил водительские права и выписки из банков, полученные в той же таинственной стране.


Удивленного не меньше таможенников гражданина Тауреда оставили на ночь в ближайшей гостинице. Приехавшие наутро сотрудники иммиграционной службы его уже не застали. По словам портье, постоялец даже не выходил из номера.


Полиция Токио не нашла ни следа пропавшего Тауреда. Либо он ускользнул через окно на 15-м этаже, либо сумел перенестись обратно.

7. Паранормальная активность


«Ожившая» мебель, шумы непонятного происхождения, зависшие в воздухе призрачные силуэты на фотографиях… Встречи с умершими происходят не только в кино. К примеру, множество мистических происшествий в лондонской подземке.


На закрытой в 1994 году станции «Олдвич» бесстрашные англичане проводят вечеринки, снимают фильмы и периодически видят гуляющую по путям женскую фигуру. На участке метро в районе Британского музея хозяйничает мумия древнеегипетской принцессы. На Ковент-гарден с 1950-х захаживает денди, одетый по моде конца XIXвека и буквально тающий на глазах, когда на него обращают внимание…


Материалисты отмахиваются от сомнительных фактов, считая

контакты с духами галлюцинациями, миражами и откровенной ложью рассказчиков. Тогда почему человечество веками цепляется за сказки о призраках? Быть может, мифическое царство мертвых – одна из альтернативных реальностей?

8. Четвертое и пятое измерения


Видимые глазом длина, высота и ширина уже изучены вдоль и поперек. Чего не скажешь про остальные два измерения, отсутствующие в Эвклидовой (традиционной) геометрии.


Научное сообщество еще не вникло в тонкости открытого Лобачевским и Эйнштейном пространственно-временного континуума. Но уже пошли разговоры про высшее – пятое по счету – измерение, доступное лишь обладателям экстрасенсорных талантов. Открыто оно и для тех, кто расширяет сознание посредством духовных практик.


Если отбросить в сторону догадки писателей-фантастов, о неочевидных координатах Вселенной почти ничего не известно. Предположительно именно оттуда в наше трехмерное пространство приходят сверхъестественные существа.

9. Переосмысление двухщелевого эксперимента


Говард Вайсман убежден, что двойственность природы света – результат соприкосновения параллельных миров. Гипотеза австралийского исследователя связывает многомировую интерпретацию Эверетта с опытом Томаса Юнга.


Отец волновой теории света в 1803 году опубликовал отчет о знаменитом двухщелевом эксперименте. Юнг установил в лаборатории проекционный экран, а перед ним – плотный экран-ширму с двумя параллельными прорезями. Затем на проделанные щели был направлен свет.


Часть излучения повела себя как электромагнитная волна – на заднем экране отразились световые полосы, прошедшие прямиком через прорези. Еще половина светового потока проявилась как скопление элементарных частиц и рассеялась по ширме.
«Каждый из миров ограничен законами классической физики. Значит, без их пересечения квантовые явления были бы попросту невозможны», – уточняет Вайсман.

10. Большой адронный коллайдер


Мультивселенная – не просто теоретическая модель. К такому выводу пришел французский астрофизик Орельен Барро, наблюдая за работой Большого адронного коллайдера. Точнее – за взаимодействием помещенных в него протонов и ионов. Соударение тяжелых частиц давало результаты, несовместимые с обычной физикой.


Барро, как и Вайсман, трактовал данное противоречие как последствие столкновения параллельных миров.