Что такое система счисления. Двоичная система счисления. епозиционные системы счисления

  • Дата: 19.06.2024

Майяская
Эгейская
Символы КППУ

История

Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам . В более поздний период такая нумерация была развита индусами и имела неоценимые последствия в истории цивилизации . К числу таких систем относится десятичная система счисления , возникновение которой связано со счётом на пальцах . В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у арабов.

Определения

Позиционная система счисления определяется целым числом b > 1 {\displaystyle b>1} , называемым основанием системы счисления. Система счисления с основанием b {\displaystyle b} также называется b {\displaystyle b} -ичной (в частности, двоичной , троичной , десятичной и т.п.).

x = ∑ k = 0 n − 1 a k b k {\displaystyle x=\sum _{k=0}^{n-1}a_{k}b^{k}} , где a k {\displaystyle \ a_{k}} - это целые числа, называемые цифрами , удовлетворяющие неравенству 0 ≤ a k ≤ b − 1. {\displaystyle 0\leq a_{k}\leq b-1.} x = a n − 1 a n − 2 … a 0 . {\displaystyle x=a_{n-1}a_{n-2}\dots a_{0}.}

В ненулевых числах x {\displaystyle \ x} начальные нули обычно опускаются.

Для записи чисел в системах счисления с основанием до 36 включительно в качестве цифр (знаков) используются арабские цифры (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) и, затем, буквы латинского алфавита (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z). При этом, a = 10, b = 11 и т.д., иногда x = 10.

При одновременной работе с несколькими системами счисления для их различения основание системы обычно указывается в виде нижнего индекса, который записывается в десятичной системе:

123 10 {\displaystyle 123_{10}} - это число 123 в десятичной системе счисления ; 173 8 {\displaystyle 173_{8}} - то же число в восьмеричной системе счисления ; 1111011 2 {\displaystyle 1111011_{2}} - то же число, но в двоичной системе счисления ; 0001 0010 0011 10 = 000100100011 B C D {\displaystyle 0001\ 0010\ 0011_{10}=000100100011_{BCD}} - то же число, но в десятичной системе счисления с двоичным кодированием десятичных цифр (BCD); 11120 3 N {\displaystyle 11120_{3N}} - то же число, но в несимметричной троичной системе счисления ; 1 i i i i 0 3 S = 177770 3 S = 122220 3 S = + − − − − 0 3 S {\displaystyle 1iiii0_{3S}=177770_{3S}=122220_{3S}=+----0_{3S}} - то же число, но в симметричной троичной системе счисления , знаки «i», «7», «2» и «−» обозначают «−1», знаки «1» и «+» обозначают «+1».

В некоторых специальных областях применяются особые правила указания основания. Например, в программировании шестнадцатеричная система обозначается:

  • в ассемблере и записях общего рода, не привязанных к конкретному языку, буквой h (от h exadecimal) в конце числа (синтаксис Intel);
  • в Паскале знаком «$» в начале числа;
  • в Си и многих других языках комбинацией 0x или 0X (от hex adecimal) в начале.

В некоторых диалектах языка Си по аналогии с «0x» используется префикс «0b» для обозначения двоичных чисел (обозначение «0b» не входит в стандарт ANSI C).

((… (a n − 1 ⋅ b + a n − 2) ⋅ b + a n − 3) …) ⋅ b + a 0 . {\displaystyle ((\ldots (a_{n-1}\cdot b+a_{n-2})\cdot b+a_{n-3})\ldots)\cdot b+a_{0}.}

Например:

101100 2 = = 1 · 2 5 + 0 · 2 4 + 1 · 2 3 + 1 · 2 2 + 0 · 2 1 + 0 · 2 0 = = 1 · 32 + 0 · 16 + 1 · 8 + 1 · 4 + 0 · 2 + 0 · 1 = = 32 + 8 + 4 + 0 = 44 10

Перевод из десятичной системы счисления

Целая часть
  1. Последовательно делить целую часть десятичного числа на основание, пока десятичное число не станет равно нулю.
  2. Полученные при делении остатки являются цифрами нужного числа. Число в новой системе записывают, начиная с последнего остатка.
Дробная часть
  1. Дробную часть десятичного числа умножаем на основание системы, в которую требуется перевести. Отделяем целую часть. Продолжаем умножать дробную часть на основание новой системы, пока она не станет равной 0.
  2. Число в новой системе составляют целые части результатов умножения в порядке, соответствующем их получению.
Пример

44 10 {\displaystyle 44_{10}} переведём в двоичную систему:

44 делим на 2. частное 22, остаток 0 22 делим на 2. частное 11, остаток 0 11 делим на 2. частное 5, остаток 1 5 делим на 2. частное 2, остаток 1 2 делим на 2. частное 1, остаток 0 1 делим на 2. частное 0, остаток 1

Частное равно нулю, деление закончено. Теперь записав все остатки снизу вверх получим число 101100 2 {\displaystyle 101100_{2}}

Перевод из двоичной в восьмеричную и шестнадцатеричную системы

Для этого типа операций существует упрощённый алгоритм.

Для восьмеричной - разбиваем переводимое число на количество цифр, равное степени 2 (2 возводится в ту степень, которая требуется, чтобы получить основание системы, в которую требуется перевести (2³=8), в данном случае 3, то есть триад). Преобразуем триады по таблице триад:

000 0 100 4 001 1 101 5 010 2 110 6 011 3 111 7

Для шестнадцатеричной - разбиваем переводимое число на количество цифр, равное степени 2 (2 возводится в ту степень, которая требуется, чтобы получить основание системы, в которую требуется перевести (2 4 =16), в данном случае 4, то есть тетрад). Преобразуем тетрады по таблице тетрад:

0000 0 0100 4 1000 8 1100 C 0001 1 0101 5 1001 9 1101 D 0010 2 0110 6 1010 A 1110 E 0011 3 0111 7 1011 B 1111 F

Преобразуем 101100 2 восьмеричная - 101 100 → 54 8 шестнадцатеричная - 0010 1100 → 2C 16

Перевод из восьмеричной и шестнадцатеричной систем в двоичную

Для этого типа операций существует упрощённый алгоритм-перевёртыш.

Для восьмеричной - преобразуем по таблице в триплеты

0 000 4 100 1 001 5 101 2 010 6 110 3 011 7 111

Для шестнадцатеричной - преобразуем по таблице в квартеты

0 0000 4 0100 8 1000 C 1100 1 0001 5 0101 9 1001 D 1101 2 0010 6 0110 A 1010 E 1110 3 0011 7 0111 B 1011 F 1111

Преобразуем 54 8 → 101 100 2C 16 → 0010 1100

Перевод из двоичной системы в 8- и 16-ричную

Перевод дробной части из двоичной системы счисления в системы счисления с основаниями 8 и 16 осуществляется точно также, как и для целых частей числа, за тем лишь исключением, что разбивка на октавы и тетрады идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа. Например, рассмотренное выше число 1100,011 2 будет выглядеть как 14,3 8 или C,6 16 .

Перевод из произвольной системы счисления в десятичную

Рассмотрим пример перевода двоичного числа 1100,011 2 в десятичное. Целая часть этого числа равна 12 (см. выше), а вот перевод дробной части рассмотрим подробнее:

0 , 011 = 0 ⋅ 2 − 1 + 1 ⋅ 2 − 2 + 1 ⋅ 2 − 3 = 0 + 0 , 25 + 0 , 125 = 0 , 375. {\displaystyle 0,011=0\cdot 2^{-1}+1\cdot 2^{-2}+1\cdot 2^{-3}=0+0,25+0,125=0,375.}

Итак, число 1100,011 2 = 12,375 10 .

Точно также осуществляется перевод из любой системы счисления, только вместо «2» ставится основание системы.

Для удобства перевода, целую и дробную части числа переводят отдельно, а результат потом конкатенируют.

Перевод из десятичной системы в произвольную

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание той системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в нуль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль. Ниже приводится пример перевода числа 103,625 10 в двоичную систему счисления.

Переводим целую часть по правилам, описанным выше, получаем 103 10 = 1100111 2 .

0,625 умножаем на 2. Дробная часть 0,250. Целая часть 1. 0,250 умножаем на 2. Дробная часть 0,500. Целая часть 0. 0,500 умножаем на 2. Дробная часть 0,000. Целая часть 1.

Итак, сверху вниз получаем число 101 2 . Поэтому 103,625 10 = 1100111,101 2

Точно также осуществляется перевод в системы счисления с любым основанием.

Сразу нужно отметить, что этот пример специально подобран, в общем случае очень редко удаётся завершить перевод дробной части числа из десятичной системы в другие системы счисления, а потому, в подавляющем большинстве случаев, перевод можно осуществить с какой либо долей погрешности. Чем больше знаков после запятой - тем точнее приближение результата перевода к истине. В этих словах легко убедиться, если попытаться, например, перевести в двоичный код число 0,626.

Вариации и обобщения

Запись рациональных чисел

Симметричные системы счисления

Симметричные (уравновешенные, знакоразрядные) системы счисления отличаются тем, что используют цифры не из множества { 0 , 1 , … , b − 1 } {\displaystyle \{0,1,\ldots ,b-1\}} , а из множества { 0 − (b − 1 2) , 1 − (b − 1 2) , … , (b − 1) − (b − 1 2) } {\displaystyle \left\{0-\left({\tfrac {b-1}{2}}\right),1-\left({\tfrac {b-1}{2}}\right),\ldots ,(b-1)-\left({\tfrac {b-1}{2}}\right)\right\}} . Чтобы цифры были целыми, нужно, чтобы b {\displaystyle b} было нечётным. В симметричных системах счисления не требуется дополнительных обозначений для знака числа. Кроме того, вычисления в симметричных системах удобны тем, что не требуется особых правил округления - оно сводится к простому отбрасыванию лишних разрядов, что резко уменьшает систематические ошибки вычислений.

Чаще всего используется симметричная троичная система счисления с цифрами { − 1 , 0 , 1 } {\displaystyle \{-1,0,1\}} . Она применяется в троичной логике и была технически реализована в вычислительной машине «Сетунь ».

Отрицательные основания

Существуют позиционные системы с отрицательными основаниями, называемые нега-позиционными :

  • -2 - нега-двоичная система счисления
  • -3 - нега-троичная система счисления
  • -10 - нега-десятичная система счисления

Нецелочисленные основания

Иногда также рассматривают позиционные системы счисления с нецелочисленными основаниями: рациональными , иррациональными , трансцендентными .

Примерами таких систем счисления являются:

Комплексные основания

Основаниями позиционных систем счисления могут быть также комплексные числа. При этом цифры в них принимают значения из некоторого конечного множества , удовлетворяющего условиям, которые позволяют выполнять арифметические операции непосредственно с представлениями чисел в этих системах счисления.

В частности, среди позиционных систем счисления с комплексными основаниями можно выделить двоичные, в которых используются лишь две цифры 0 и 1.

Примеры

Далее будем записывать позиционную систему счисления в следующем виде ⟨ ρ , A ⟩ {\displaystyle \langle \rho ,A\rangle } , где ρ {\displaystyle \rho } - основание системы счисления, а A - множество цифр. В частности, множество A может иметь вид:

Примерами систем счисления с комплексными основаниями являются (далее j - мнимая единица):

  • ⟨ ρ = j R , B R ⟩ . {\displaystyle \langle \rho =j{\sqrt {R}},B_{R}\rangle .}
  • ⟨ ρ = 2 e ± j π / 2 , B 2 ⟩ . {\displaystyle \langle \rho ={\sqrt {2}}e^{\pm j\pi /2},B_{2}\rangle .}
  • ⟨ ρ = 2 e j π / 3 , { 0 , 1 , e 2 j π / 3 , e − 2 j π / 3 } ⟩ ; {\displaystyle \langle \rho =2e^{j\pi /3},\{0,1,e^{2j\pi /3},e^{-2j\pi /3}\}\rangle ;}
  • ⟨ ρ = R , B R ⟩ , {\displaystyle \langle \rho ={\sqrt {R}},B_{R}\rangle ,} где φ = ± arccos ⁡ (− β / 2 R) {\displaystyle \varphi =\pm \arccos {(-\beta /2{\sqrt {R}})}} , β < min { R , 2 R } {\displaystyle \beta <\min\{R,2{\sqrt {R}}\}} - целое положительное число, которое может принимать несколько значений при данном R ;
  • ⟨ ρ = − R , A R 2 ⟩ , {\displaystyle \langle \rho =-R,A_{R}^{2}\rangle ,} где множество A R 2 {\displaystyle A_{R}^{2}} состоит из комплексных чисел вида r m = α m 1 + j α m 2 {\displaystyle r_{m}=\alpha _{m}^{1}+j\alpha _{m}^{2}} , а числа α m ∈ B R . {\displaystyle \alpha _{m}\in B_{R}.} Например: ⟨ − 2 , { 0 , 1 , j , 1 + j } ⟩ ; {\displaystyle \langle -2,\{0,1,j,1+j\}\rangle ;}
– Игорь (Администратор)

В рамках данной статьи, я расскажу вам что такое системы счисления , а так же какие они бывают.

Каждый день мы пользуемся различными системами счисления, например, десятичной. А если же вы больше знаете об информационных технологиях, то невозможно так же не упомянуть про двоичную, восьмеричную и шестнадцатеричную. Однако, что это такое и есть ли какие-то нюансы, знает далеко не каждый. Поэтому далее я постараюсь разложить все по полочкам.

Система счисления - это метод, определяющий запись чисел, а так же возможные математические операции над этими числами.

Чтобы было легче понять, рассмотрим простой пример. Допустим, не существует десятичной системы счисления и вам необходимо посчитать количество тарелок на столе. Во первых, для решения этой задачи вам необходимы какие-то ориентиры. Например, 1 спичка - это одна тарелка, а коробок - это 10 тарелок. Второй задачей является возможность как-то оперировать этими числами. Чтобы можно было добавлять или убирать тарелки со стола и вы могли бы их посчитать. Тут все привычно, добавилась тарелка - добавили спичку, унесли тарелку - убрали спичку, спичек стало 10, заменили их на коробок.

Вот это и есть пример простой системы счисления, состоящий из записи чисел (спичек, коробка) и математических операций (добавить, убрать).

Сам вопрос, как вести учет чисел уже давно стоял перед человечеством, поэтому существуют их градации.. И вот, как минимум, 3 типа:

1. Непозиционная система счисления - самые древний вид системы. Он подразумевает, что каждая цифра в числе не зависит от ее расположения (позиции, разряда). Например, придуманная чуть выше система - это непозиционная. Так как вы можете выкладывать спички и коробки в любом угодном вам порядке (хоть кружком, хоть наискосок) и от этого их общая сумма не изменится.

2. Позиционная система счисления (однородная) - данная система подразумевает, что каждый символ в купе с его позицией имеют смысл. Например, привычная нам десятичная система. В ней порядок следования числе важен и влияет на само число. Так 120 не равно 201, хотя сами цифры в них одинаковые. При этом важно отметить, что у позиционных однородных систем каждая позиция может принимать любое из базовых элементов исчисления. То есть, если речь идет о двоичной системе, то значение в любом разряде может быть 0 или 1. Для восьмеричной - от 0 до 7. И так далее.

3. Смешанная система счисления - как и следует из названия, это различные вариации систем. Чаще всего, они представляют собой модифицированные позиционные системы исчисления. Например, дата и время, в которой есть ограничения порядка следования чисел и их возможных значений.

Градации хоть и кажутся весьма простыми, но все же стоит помнить, что сегодня существует огромное количество систем счисления, которые применяются в разнообразных сферах. Это и криптография, и компьютеры, и многое многое другое. Кроме того, если рассматривать тот же пример про спички, то таких систем в обыденности придумывается много. Например, учет сделанных и не сделанных дел каждый может вести своеобразным образом (есть общая стопка дел, есть стопка сделанных дел, листок из одной перекладывается в другую в любом порядке по мере готовности).

Теперь, вы знаете о том, что такое системы счисления, зачем они нужны и какие они бывают.

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления , её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная . Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая - 7 единиц, а третья - 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 . 10 2 + 5 . 10 1 + 7 . 10 0 + 7 . 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

где a i - цифры системы счисления; n и m - число целых и дробных разрядов, соответственно. Например:

Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:

    двоичная (используются цифры 0, 1);

    восьмеричная (используются цифры 0, 1, ..., 7);

    шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати - в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления .

В цифровых устройствах приходится иметь дело с различными видами информации. Это в чистом виде двоичная информация, такая как включен прибор или выключен, исправно устройство или нет. Информация может быть представлена в виде текстов, и тогда приходится буквы алфавита кодировать при помощи двоичных уровней сигнала. Достаточно часто информация может представлять собой числа. Числа могут быть представлены в различных системах счисления. Форма записи в них чисел существенно различается между собой, поэтому, прежде чем перейти к особенностям представления чисел в цифровой технике, рассмотрим их запись в различных системах счисления.

Системы счисления

Начнем с определения системы счисления. Система счисления - это совокупность правил записи чисел цифровыми знаками. Системы счисления бывают позиционные и непозиционные. В настоящее время и в технике и в быту широко используются как позиционные, так и непозиционные системы счисления. Рассмотрим сначала примеры непозиционных систем счисления.

В качестве классического примера непозиционной системы счисления обычно приводят римскую форму записи чисел. Там не менее это не единственная непозиционная система счисления, используемая в настоящее время.

Сейчас, как и в глубокой древности, для записи числа используются так называемые “палочки”. Эта форма записи чисел наиболее понятна и требует для записи числа всего один символ. Число образуется суммой этих “палочек”. Однако при записи больших чисел возникают неудобства. Число получается громоздким и его трудно читать.

В следующем варианте непозиционной системы счисления стали использовать несколько символов (цифр). Каждая цифра обозначает различное количеств единиц. Конечное число точно так же как и в предыдущем варианте образуется суммой цифр. Наиболее яркий вариант использования такой системы счисления - это денежные отношения. Мы с ними сталкиваемся каждый день. Здесь никому не приходит в голову, что сумма, которую мы выкладываем за продукты, может зависеть от того, в каком порядке мы расположим монеты на столе! Номинал монеты или банкноты не зависит от того, в каком порядке она была вынута из кошелька. Это классический пример непозиционной системы счисления.

Однако чем большее число требуется представить в такой системе счисления, тем большее количество цифр требуется для этого. Позиционные системы счисления были придуманы относительно недавно для того, чтобы сэкономить количество цифр, используемое для записи чисел.

Значение цифры в позиционной системе счисления зависит от её позиции в записываемом числе. В позиционной системе счисления появляются два очень важных понятия - основание системы счисления и вес цифры. Дело в том, что в позиционной системе счисления число представляется в виде формулы разложения:

A p =a n p n +a n-1 p n-1 +...+a 2 p 2 +a 1 p 1 +a 0 p 0 +a -1 p -1 +a -2 p -2 +...+a -k p -k

где p - основание системы счисления
p i - вес единицы данного разряда
a i - цифры, разрешённые в данной системе счисления.

При этом количество цифр в системе счисления зависит от основания. Количество цифр равно основанию системы счисления. В двоичной системе счисления две цифры, в десятичной – десять, а в шестнадцатеричной – шестнадцать. Число в любой позиционной системе счисления записываются в виде последовательности цифр:

A=a n a n-1 ...a 2 a 1 a 0 ,a -1 a -2 ...a -k ,

где ai – цифры данной системы счисления, а цифра, соответствующая единицам определяется по положению десятичной запятой (или десятичной точки в англоязычных странах). Каждая цифра, использованная в записи числа, называется разрядом.

Какие же системы счисления применяются в настоящее время? Первый ответ, который я ожидаю – это десятичная система счисления. А ещё? Да, да не удивляйтесь! Мы широко используем и другие системы счисления! Достаточно посмотреть себе на левую руку. Там мы увидим часы. Сколько минут помещается в часе? Шестьдесят! Сколько секунд помещается в минуте? Шестьдесят! Налицо признаки шестидесятеричной системы счисления. Это наследование древней вавилонской системы счисления, которую вместе с компасом и часами европейцы заимствовали от арабов.

А еще примеры? Да сколько угодно! Картушка компаса делится на восемь румбов. Чем не восьмеричная система счисления? А давно ли в России отказались от полушек (четверть копейки) или грошей (половина копейки)? А следующее значение монеты – две копейки! Чем не двоичная система счисления?

Рассмотрим подробнее системы счисления, наиболее часто используемые в цифровой технике.

Десятичная система счисления

Основание этой системы счисления p равно десяти. В этой системе счисления используется десять цифр. В настоящее время для обозначения этих цифр используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число в десятичной системе счисления записывается как сумма единиц, десятков, сотен, тысяч и так далее. То есть веса соседних разрядов различаются в десять раз. Точно также записываются и числа, меньшие единицы. В этом случае разряды числа будут называться как десятые, сотые или тысячные доли единицы.

Рассмотрим пример . Для того чтобы показать, что в примере используется именно десятичная система счисления, используем индекс 10. Если же кроме десятичной формы записи чисел не предполагается использования никакой другой, то индекс обычно не используется:

A 10 =247,56 10 =2*10 2 +4*10 1 +7*10 0 +5*10 -1 +6*10 -2 = 200 10 +40 10 +7 10 +0,5 10 +0,06 10

Здесь самый старший разряд числа будет называться сотнями. В приведённом примере сотням соответствует цифра 2. Следующий разряд будет называться десятками. В приведённом примере десяткам соответствует цифра 4. Следующий разряд будет называться единицами. В приведённом примере единицам соответствует цифра 7. Десятым долям соответствует цифра 5, а сотым – 6.

Двоичная система счисления

Основание этой системы счисления p равно двум. В этой системе счисления используется две цифры. Чтобы не выдумывать новых символов для обозначения цифр, в двоичной системе счисления были использованы символы десятичных цифр 0 и 1. Для того чтобы не спутать систему счисления в записи числа используется индекс 2. Если же кроме двоичной формы записи чисел не предполагается использования никакой другой, то этот индекс можно опустить.

Число в этой системе счисления записывается как сумма единиц, двоек, четвёрок, восьмёрок и так далее. То есть веса соседних разрядов различаются в два раза. Точно также записываются и числа, меньшие единицы. В этом случае разряды числа будут называться как половины, четверти или восьмые доли единицы.

Рассмотрим пример записи двоичного числа:

A 2 =101110,101 2 = 1*2 5 +0*2 4 +1*2 3 +1*2 2 +1*2 1 +0*2 0 +1*2 -1 +0*2 -2 +1*2 -3 = 32 10 +8 10 +4 10 +2 10 +0,5 10 +0,125 10 =46,625 10

При записи во второй строке примера десятичных эквивалентов двоичных разрядов мы не стали записывать степени двойки, которые умножаются на ноль, так как это привело бы только к загромождению формулы и, как следствие, затруднение понимания материала.

Недостатком двоичной системы счисления можно считать большое количество разрядов, требующихся для записи чисел. В качестве преимущества этой системы счисления можно назвать простоту выполнения арифметических действий, которые будут рассмотрены позднее.

Восьмеричная система счисления

Основание этой системы счисления p равно восьми. Восьмеричную систему счисления можно рассматривать как более короткий вариант записи двоичных чисел, так как число восемь является степенью числа два. В этой системе счисления используется восемь цифр. Чтобы не выдумывать новых символов для обозначения цифр, в восьмеричной системе счисления были использованы символы десятичных цифр 0, 1, 2, 3, 4, 5, 6 и 7. Для того чтобы не спутать систему счисления в записи числа используется индекс 8. Если же кроме восьмеричной формы записи чисел не предполагается использования никакой другой, то этот индекс можно опустить.

Число в этой системе счисления записывается как сумма единиц, восьмёрок, шестьдесят четвёрок и так далее. То есть веса соседних разрядов различаются в восемь раз. Точно также записываются и числа, меньшие единицы. В этом случае разряды числа будут называться как восьмые, шестьдесят четвёртые и так далее доли единицы.

Рассмотрим пример записи восьмеричного числа:

A 8 =125,46 8 =1*8 2 +2*8 1 +5*8 0 +4*8 -1 +6*8 -2 = 64 10 +16 10 +5 10 +4 10 /8 10 +6 10 /64 10 = 85,59375 10

Во второй строке приведённого примера фактически осуществлён перевод числа, записанного в восьмеричной форме в десятичное представление того же самого числа. То есть мы фактически рассмотрели один из способов преобразования чисел из одной формы представления в другую.

Так как в формуле используются простые дроби, то возможен вариант, что точный перевод из одной формы представления в другую становится невозможным. В этом случае ограничиваются заданным количеством дробных разрядов.

Шестнадцатеричная система счисления

Основание этой системы счисления p равно шестнадцати. Эту систему счисления можно считать ещё одним вариантом записи двоичного числа. В этой системе счисления используется шестнадцать цифр. Здесь уже не хватает десяти цифр, поэтому приходится придумать недостающие шесть цифр.

Для обозначения этих цифр можно воспользоваться первыми буквами латинского алфавита. При записи шестнадцатеричного числа неважно буквы верхнего или нижнего регистра будут использоваться в качестве цифр. В качестве цифр в шестнадцатеричной системе используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Так как здесь появляются новые цифры, то приведём таблицу соответствия этих цифр десятичным значениям.

Таблица 6. Таблица соответствия шестнадцатеричных цифр десятичным значениям

Число в этой системе счисления записывается как сумма единиц, чисел шестнадцать, двести пятьдесят шесть и так далее. То есть веса соседних разрядов различаются в шестнадцать раз. Точно также записываются и числа, меньшие единицы. В этом случае разряды числа будут называться как шестнадцатые, двести пятьдесят шестые и так далее доли единицы.

Рассмотрим пример записи шестнадцатеричного числа:

A 16 =2AF,C4 16 =2*16 2 +10*16 1 +15*16 0 +12*16 -1 +4*16 -2 = 512 10 +160 10 +15 10 +12 10 /16 10 +4 10 /254 10 = 687,765625 10

Из приведённых примеров записи чисел в различных системах счисления вполне очевидно, что для записи одного и того же числа с одинаковой точностью в разных системах счисления требуется различное количество разрядов. Чем больше основание системы счисления, тем меньшее количество разрядов требуется для записи одного и того же числа.

Литература:

Вместе со статьей "Системы счисления" читают: